Project 1: Cryptography e e s e

Overview o

Attack some insecure “systems” of the fictional Blue University

e Learn cryptographic principles, what attacks look like, & why you
should never implement your own crypto (libraries are your friend!)

1660 students 1620/2660 students

1. Grades Everything from Part 1
2. vy 4. Padding
3. Passwords

e Problems are self-contained & can be worked on in any order

Getting Started

--DEV-ENVIRONMENT
| --docker/
| --home/
| |--.etc/
| |--p@1-cryptography-yourname/ # <------------- Clone your stencil here!
| --run-container
==

Repository Layout

pel-cryptography-yourname

- passwords/ # <--- Problem directory for passwords

| - grades/ # <--- Problem directory for ivy
| |- stencil/ # <--- Stencil code for grades

| |- go/

| | |- STENCIL.md # Guide for using this stencil
| | |- sol.go

| | |5 sas

| |- python/

| | |- STENCIL.md

| - =

| =

|- ivy/ # <--- Problem directory for ivy

| |- stencil/ # <--- Stencil code for ivy

|

|

|

|

Stencil Code ,

Stencils in Python & Go available for Grades, Ivy, & Padding .
To begin, copy the stencil you want into the directory for that problem

csl660-user@container:~/repo$ cp -Trv grades/stencil/python grades

STENCIL.md: read for helpful info about the stencil

(Go only) Makefile: run make to compile

Submitting

For every problem, your repo should have:

e Your solution program (usually sol)
e Any other required stencil files

e README
o Describe the attack, how you did it, what you might change
o See handout for per-problem details

o Anything else we should know (what you tried, feedback, issues, etc.)

Your README is important—we're interested in your
discussion/analysis!

Grades

You have; o o

e Database of grades, encrypted with ECB mode

o Weak b/c the same plaintext block will always produce the same ciphertext block

e Some statistics
o 100,000 students, 30 grades/student
o Acrossall grades: 50% As, 30% Bs, ...

You need to:

e Gather some information about the database, without decrypting
anything

Types & Bytes

What type is a ciphertext? It's just bytes

Get a string as bytes
str_as_bytes = "hello".encode("utf-8") # b'hello’

Construct arbitrary bytes
b = bytes([@xaa, Oxbb, @xcc, ©xdd]) # b'\xaa\xbb\xcc\xdd

Common to print in "hex-encoded" form
b.hex() # 'aabbccdd'
str_as_bytes.hex() # '68656c6f"’

Ivy Wireless ..

You have; o o

e Encryption oracle: given plaintext m, returns (iv, c)
o Cansend as many plaintexts as want -> chosen plaintext attack
e |nitial setup phase: client sends you encrypted key k

You need to;

e Recover key k

Your program

Setup phase: on
startup, client sends
encrypted key

If you can send as
many plaintexts as
you want, can you
learn something
about the key?

(\Vo, Co = EHCD (k))

Client

<

m,

(\\/'\, C'| = EHCD (m'|))

<

mi

(I, i = EncL(mi)

<

Interacting with vy Client

Normal operation: you
send a plaintext
message
(hex-encoded string),
client responds with a
(IV, ciphertext) for that
message

Passwords

You have: { e o o
"method": "plain",
e “Database” of passwords "users”: {
"usere399": {
"password": "7vxd"
" })
You need to: Y eeranr
"password”: "hb5s"
e Implement two methods -
of “secure” password } }
storage
o Single hash (shal-nosalt)
o Salted hash (sha1-salt4) Passwords are:

e Then attack! e 4 characters long

e Containing only lowercase ASCII letters
(a-z) and digits (0-9)

Hashing

More secure to store a hash of the user’s password
{

"method": "shal-nosalt”,
"users": {
"user3234": {
"password"”: "1cc33637bdd3b586d89d259d719e8ad9a5e4f42e"
}
}

But it can still be guessed, especially with a restrictive
password policy

e \What does that guessing look like?

Padding (€S1620/CS2660only) . . .

You have; e o

e “Grading server”: given (iv, c)encrypted in CBC mode, returns
plaintext m or error

You need to:;

e Forge one (iv, c)pair that decrypts to a command that reveals student
12345's grades
o There are many combinations of (iv, ¢) that do this—all you need
to do is find one that works
e Not attempting to find key or break actual encryption process

. . . . Interacting with Grading Server

Your program Server

— (v, o) When server receives a message,
— it does something like this:

if len(c) not multiple of
block size (16 bytes):
response (not encryp’fed) - return error

m = decrypt(c)
« if padding is invalid:
return "incorrect padding”

result = run_command(m)
return result

We can use the different kinds of errors to result may be an error
determine how far into breaking the system we got if invalid command

CBC Mode

Plaintext Plaintext Plaintext Ciphertext Ciphertext

(NENNENNENNERE COOIITIITIIT] (ENNENEENNEEEN IO c, OIOOIIImeC,
Initialization Vector (IV) li l
% %
block cipher K block cipher
Ke block cipher K block cipher Ke block cipher ‘| decryption ey ’ decryption
y encryption & encryption y encryption
— — l ¢ ;s
EEEEEEEENEENE) NEENRENEERENE] ENNENEENNENEE V ——
Ciphertext Ciphertext Ciphertext p p
: OIITIITITTIT] Py OTITTITIITITI P,
encryphon Plaintext Plaintext
decryption

Goal: choose (IV, C) to get desired command P =V @ |

e Many combinations work, just need to find one

e |Viseasierto control than C/I, so let’s keep C constant

e Find I corresponding to constant C -> then can calculate IV for desired P
Work backwards across blocks with previous C = this IV

Goal: find (IV, C) such that P 00

endsin 0x01

Different from IV to

Finding |

01
02

produce desired [V | XX | XX | XX | 5A 60 | 00 | 60 | 00 | C
command P v
If we know IV (input) & P Dec (+—Kk
(padding leak), we can v
calculate | |
S5A@[[0]=01 V
I[0] = 5B >C;>
. o Then, to set P[0] = 02: XX | XX | XX | e1 | P
S IV[O] ® 5B = 02

IV[O] = 59
Repeat to find all bytes of |

