
Gearup
Project 1: Cryptography

Overview
Attack some insecure “systems” of the fictional Blue University

● Learn cryptographic principles, what attacks look like, & why you
should never implement your own crypto (libraries are your friend!)

1660 students 1620/2660 students

1. Grades
2. Ivy
3. Passwords

Everything from Part 1
 4. Padding

● Problems are self-contained & can be worked on in any order

Getting Started

Repository Layout

Stencil Code
Stencils in Python & Go available for Grades, Ivy, & Padding

To begin, copy the stencil you want into the directory for that problem

STENCIL.md: read for helpful info about the stencil

(Go only) Makefile: run make to compile

Submitting
For every problem, your repo should have:

● Your solution program (usually sol)

● Any other required stencil files

● README
○ Describe the attack, how you did it, what you might change

○ See handout for per-problem details

○ Anything else we should know (what you tried, feedback, issues, etc.)

Your README is important—we’re interested in your
discussion/analysis!

Grades
You have:

● Database of grades, encrypted with ECB mode
○ Weak b/c the same plaintext block will always produce the same ciphertext block

● Some statistics
○ 100,000 students, 30 grades/student
○ Across all grades: 50% As, 30% Bs, …

You need to:

● Gather some information about the database, without decrypting
anything

Types & Bytes
What type is a ciphertext? It’s just bytes

Ivy Wireless
You have:

● Encryption oracle: given plaintext m, returns (iv, c)
○ Can send as many plaintexts as want -> chosen plaintext attack

● Initial setup phase: client sends you encrypted key k

You need to:

● Recover key k

Interacting with Ivy Client

Your program Client

(IV₀, C₀ = Enc︙(k))Setup phase: on
startup, client sends
encrypted key

(IV₁, C₁ = Enc︙(m₁))

m₁

(IVᵢ, Cᵢ = Enc︙(mᵢ))

mᵢ

…

Normal operation: you
send a plaintext
message
(hex-encoded string),
client responds with a
(IV, ciphertext) for that
message

If you can send as
many plaintexts as
you want, can you
learn something
about the key?

Passwords
You have:

● “Database” of passwords

You need to:

● Implement two methods
of “secure” password
storage
○ Single hash (sha1-nosalt)
○ Salted hash (sha1-salt4)

● Then attack!
Passwords are:
● 4 characters long
● Containing only lowercase ASCII letters

(a-z) and digits (0-9)

Hashing
More secure to store a hash of the user’s password

But it can still be guessed, especially with a restrictive
password policy

● What does that guessing look like?

Padding (CS1620/CS2660 only)
You have:

● “Grading server”: given (iv, c) encrypted in CBC mode, returns
plaintext m or error

You need to:

● Forge one (iv, c) pair that decrypts to a command that reveals student
12345’s grades
○ There are many combinations of (iv, c) that do this—all you need

to do is find one that works
● Not attempting to find key or break actual encryption process

Interacting with Grading Server

Your program Server

(IV, C)

response (not encrypted)

When server receives a message,
it does something like this:

if len(c) not multiple of
block size (16 bytes):
 return error
m = decrypt(c)
if padding is invalid:
 return "incorrect padding"
result = run_command(m)
return result

result may be an error
if invalid command

We can use the different kinds of errors to
determine how far into breaking the system we got

CBC Mode

encryption

Goal: choose (IV, C) to get desired command P = IV ⊕ I
● Many combinations work, just need to find one
● IV is easier to control than C/I, so let’s keep C constant
● Find I corresponding to constant C -> then can calculate IV for desired P

Work backwards across blocks with previous C = this IV

decryption

IV
I₁

P₁

Finding I
Goal: find (IV, C) such that P
ends in 0x01
● Different from IV to

produce desired
command P

● If we know IV (input) & P
(padding leak), we can
calculate I

XX XX XX 5AIV

00
01
02
︙

00 00 00 00 C

Dec k

I

⊕

XX XX XX 01 P

5A ⊕ I[0] = 01
I[0] = 5B

Then, to set P[0] = 02:
IV[0] ⊕ 5B = 02
IV[0] = 59

Repeat to find all bytes of I

