https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 8: Authentication

Co-Instructor: Nikos Triandopoulos
February 20, 2025

A7
N

0

BROWN

https://brown-csci1660.github.io/

CS1660: Announcements

¢ Course updates

¢ Project 1is due today — let us know if you have any issues (need extension, etc.)
¢ Homework 1 is due in a week from today (Thu, Feb 27)

¢ Project 2, new dates: Out Feb 25 — Due Mar 11

¢ Where we are

'//0 Part I: Crypto — wrap up today, transitioning to Web security...
o Partll: Web

¢ Part lll: OS

o Part IV: Network

¢ Part V: Extras

Today

+ Cryptography
¢ Wrap up

¢ Authentication
¢ User
¢ System

¢ Data

=
e
% SRS
v ﬁ'-d

T

e
=

o
o

—
=

—
=

.1& ,- = T ,- .1& ,- .1& SRR ,- .1& ,- .1&’ ,- .1&’ ,- .1& ,- .1& z .1& z .1& g .1& S z .1& z

=
s g s o s o s o o 2 o 2 o

Crypto recap through
Discrepancies...

Discrepancies

& Security Vs. cryptography

¢ Guarantees Vs. threat model

¢ Confidentiality Vs. integrity

¢ Prevention Vs. detection

¢ Old Vs. modern cryptography

¢ Perfect Vs. computational security
¢ Modelled Vs. practical attacker

¢ Crypto Vs. non-crypto security

¢ Truly Vs. pseudo random

¢ Secret Vs. public

4

R GEIS R, NI YN

4

Theory Vs. practice

Ideal model Vs. implementation
Open Vs. closed design

Symmetric Vs. asymmetric crypto
Block Vs. all-length designs

Data Vs. user authentication

Set-up Vs. real-world assumptions
Good hygiene Vs. arbitrary practices

Random Vs. non-random

Authentication protocols

How to authenticate two systems?

Client

R

Identifier l

Success / Failure

Authentication
Server

But...

Mallory \-@' n

o

Identifier |

Prove it?

44— Authentication

Client | Shared secret key l Server

——]——TD

Success / Failure

Even better method...

Replay attack! Mallor
y
»

o

Identifier l

Prove it?

44— Authentication

Client I H(Shared secret key) l Server

——]—TD

Success / Failure

10

Challenge-response

¢ Use challenge-response, to prevent replay attack
¢ Goal is to avoid the reuse of the same credential
¢ Suppose Client wants to authenticate Server
¢ Challenge sent from Server to Client
¢ Challenge is chosen so that...
¢ Replay is not possible
¢ Only Client can provide the correct Response

¢ Server can verify the response

11

Nonces

¢ To ensure “freshness”, can employ a nonce
¢ Nonce == number used once

¢ What to use for nonces?
¢ A unique random string
¢ What should the Client do with the nonce?
¢ Transform the nonce using the shared secret
¢ How can the Server verify the response?

+ Server knows the shared secret and the nonce, so can check if the response
is correct

12

Challenge-Response authentication method

R

Client

Mallory \w’ n

o

Identifier l

Prove it w.r.t. nonce?

MG SN W WS NG - RN N e
I H(Shared secret key, nonce) I|
_

Success / Failure

Authentication
Server

13

Authentication protocols

¢ Challenge response mainly relies on nonce
¢ What if nonce wasn’t random?

¢ Harder to authenticate humans, more on that later...

Summary of message-authentication crypto tools

Yes Yes Yes
Crpspian | ore oot e e 150

Entropy

¢ Amount of uncertainty in a situation

+ Fair Coin Flip
¢ Maximum uncertainty
¢ Biased Coin Flip

¢ More bias - Less uncertainty

16

Entropy (cont.)

¢ Computers need a source of uncertainty (entropy) to generate random
numbers.

¢ Cryptographic keys.
¢ Protocols that need coin flips.
¢ Which are sources of entropy in a computer?
¢ Mouse and keyboard movements or thermal noise of processor.

+ Unix like operating systems use dev/random and
dev/urandom as randomness collector

17

Random numbers in practice

¢ We need random numbers but...

“Anyone who considers arithmetical methods of producing random numbers is, of
course, in a state of sin. - John von Neumann

¢ Bootup state is predictable and entropy from the environment may be limited:
+ Temperature is relatively stable
¢ Oftentimes the mouse/keyboard motions are predictable

+ Routers often use network traffic
+ Eavesdroppers.

+ Electromagnetic noise from an antenna outside of a building

+ Radioactive decay of a ‘pellet’ of uranium

+ Lava lamps...

18

Lava lamps

¢ Cloudflare company uses lava lamps as an entropy source

Y.TT!Y!|I!‘111 660

19

Provable security: Idealized models

+ challenge in proving security of scheme S that employs scheme S’

¢ no reasonable assumption on S’ or ‘A can provide a security proof for S
+ naive approach: look for other schemes or use scheme S (if S’ looks “secure”
¢ middle-ground approach: fully rigorous proof Vs. heuristic proofs

¢ employ idealized models that impose assumptionson §’, A

o formally prove security of S in this idealized model

¢ better than nothing...

+ canonical example: employ the random-oracle model when using hashing

& a cryptographic hash function h is treated as a truly random function

20

The random-oracle model

treats a cryptographic hash function h as a “black box” realizing a random function
¢ models h as a “secret service” that is publicly available for querying

& anyone can provide input x and get output h(x)

¢ nobody knows the exact functionality of the “box”

X
—>
. . «—
¢ queries are assumed to be private

h(x)

¢ interpretation of internal processing

¢ if query x is new, then record and return a random value h(x) in the hash range

¢ otherwise, answer consistently with previous queries on x

2

Using a random oracle h: Properties

¢ models h as a “secret service” that is publicly available for querying
+ black-box access: information leaks only via its API
¢ consistent & private querying
¢ random hashing = ’
-

e in proofs by reduction (reduction ‘A’ using adversary ‘A) h(x)

+ probability is taken (also) over random choice of uniform h

¢ in simulating oracle h (accessed by “A) ‘A’ can exploit the above properties

¢ if x has not been queried before, h(x) is uniform (cf. PRG value G(x))
¢ if A queries h onx, A’ learns x (extractability)

o A’ can select answer h(x) to query x as long as it’s uniform (programmability)

22

Recall: PRF — security

b = 0 when D thinks that its oracle is f()
b =1 when D thinks that its oracle is Fi()

security parameter 1"

(D) case0 | Y= randomstring THO() %

770() is uniform f < >

Y
case 1 Y= pseudorandom string F,(X)

O() is Fi(), ke{0,1} < b€{0,1} PPT distinguisher

‘D behaves the same
| Pr[DFte)(1n) = 1] = Pr[DO(1") = 1] | € negl(n) no matter what
its oracle is!

23

Random-oracle model Vs. PRF

—
h
h(x)

¢ random-oracle model

—
" -\

/0 4
O £:0 M
7 2
- | |

case 0

case 1l

T

; O() is uniform f

O() is F,(), ke{0,1}

Y = random string

X
= >
Y
Y= pseudorandom string F,(X)

be{o,1}

>

PPT distinguisher

¢ models publicly-known & deterministic cryptographic hashing
+ used as black box in constructions (& analysis)
¢ in practice, instantiated by a concrete scheme

s PRF

¢ models keyed functions that produce pseudorandom values if keys are secret
¢ oracle access to a uniform f is used as a means to define security of PRFs
¢ PRFs are generally not random oracles

24

Power of random oracles

consider a random oracle h

¢ hcan be used as a PRG (assuming h expands its input) (X:> h
o | Pr[D(h(s)) = 1] = Pr[D(r) = 1] | < negl(n) h(x)
+ querying for h(s) happens with negligible probability

¢ his a CR hash function (assuming h compressed its input)
¢ why?

¢ h can provide a PRF (assuming inputs and outputs of 2n and n, respectively)
¢ Fi(x) = h(k]|x)
o | Pr[DMOF)(1n) = 1] — Pr[DMOf0(1") = 1] | < negl(n)

¢ why?

25

Random-oracle methodology

1. design & analyze using random oracle h; 2. instantiate h with specific function h’
¢ how sound is such an approach? on-going debate in cryptographic community
¢ pros (proof in random-oracle model better than no proof at all)

¢ leads to significantly more efficient (thus practical) schemes

¢ design is sound, subject to limitations in instantiating h to h’

¢ at present, only contrived attacks against schemes proved in this model are known
e cons (proofs in the standard model are preferable)

¢ random oracles may not exist (cannot deterministically realize random functions)

o real-life As see the code of h’ (e.g., may find a shortcut for some hash values)

¢ can construct scheme S, s.t. S is proven secure using h, but is insecure using h’

¢ note: “h’ is CR” Vs. “h’ is a random oracle”

26

Constructing hash functions in practice

o typically, using the Merkle-Damgard transform

X Xo e Xz Xs:.=L

,\\ \\ N
\\ N L \\ \\ \ L \
Zo=IV| ps | Zi| ps ,_ i }_ hSLHS(X)

h, 5 N

¢ (this precludes practical schemes being random oracles!)
+ reduces problem to design of CR compression functions
+ generic PRF-based compression schemes exist

%

The Davies-Meyer scheme

¢ assume PRF w/ key length n & block length /
e define h: {0,1}"* — {0,1} as h(k| | x) = F,(x) XOR x
¢ hisCR,ifFisanideal cipher @z --—-—-—--"--"-"---———-

|
¢ idealized model that treats a PRF Y o—
|

as a random keyed permutation k— >N F —
¢ stronger than random oracle .
|

C e — — — — — — — — — —— —

¢ some known block ciphers
e.g., DES and triple-DES, are known not to be ideal ciphers!

28

29

The Dyn DDoS attack

It’s unfair! — | had no class but couldn’t watch my Netflix series!

On October 21, 2016, a large-scale cyber was launched
+ it affected globally the entire Internet but particularly hit U.S. east coast

¢ during most of the day, no one could access a long list of major Internet
platforms and services, e.g., Netflix, CNN, Airbnb, PayPal, Zillow, ...

o this was a Distributed Denial-of-Service (DDoS) attack

Architecture of a DDoS Attack

Lo 5 ———

W S] A L/Hgg\J L "ﬂ |

. . ‘ 4 - —~ ___— / —
Zonb e] [Zon'b e] [Zon'hle] [Zonb Zon'b e Zontue Zon'b e] Zorrble

30

DoS: A threat (mainly) against availability

Which main security property does a Denial-of-Service (DoS) attack attempt to defeat?

¢ availability; a user is denied access to authorized services or data
¢ availability is concerned with preserving authorized access to assets
¢ a DoS attack aims against this property; its name itself implies its main goal

¢ integrity & confidentiality; services or data are modified or accessed by an
unauthorized user

¢ elements of a DoS attack may include breaching the integrity or confidentiality of
a system

¢ but the end goal is disruption of a service or data flow; not the manipulation,
fabrication or interception of data and services

31

The Domain Name Service (DNS) protocol

Resolving domain names to IP addresses

¢ when you type a URL in your Web browser, its IP address must be found
¢ e.g., domain name “netflix.com” has IP address “52.22.118.132"
o larger websites have multiple IP responses for redundancy to distributing load
o at the heart of Internet addressing is a protocol called DNS

¢ a database translating Internet names to addresses

query: Please resolve netflix.com

|
answer: P is 52.22.118.132

33

DNS name resolution is a critical asset — a target itself!

What main security properties must be preserved in such an important service?

¢ all properties in CIA triad are relevant!
¢ resolving domain names to IP addresses is a service that
¢ must critically be available during all times — availability

¢ or else your browser does not know how to connect to Netflix...

¢ must critically be trustworthy — integrity

or else connections to malicious sites may occur (e.g., DNS-spoofing attacks)

¢ must also protect database entries that are not queried — confidentiality

¢ or else an attacker may find out about the structure of a target organization
(e.g., zone-enumeration attacks)

34

Recursive name resolution: hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers
¢ application-level (e.g., Web browser), OS-level (e.g., stub resolver): locally managed

¢ recursive DNS servers: query other resolvers and cache recent results

DNS entries: subset of cached queried entries locally cached IP addresses
<netflix.com, 52.22.118.132> (or information of other resolvers) (at Web browser and OS)

netflix.com
< —
3 <

— it

52.22.118.132
(or “non-existent”)

primary secondary
35

Recursive name resolution: hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers
¢ application-level (e.g., Web browser), OS-level (e.g., stub resolver): locally managed
¢ recursive DNS servers: query other resolvers and cache recent results

¢ root name servers: refer to appropriate TLD (top-level domain) server
o

TLD servers: control TLD zones such as .com, .org, .net, etc.

DNS entries: subset of cached queried entries locally cached IP addresses
<netflix.com, 52.22.118.132> (or information of other resolvers) (at Web browser and OS)

netflix.com

1y
t >

— it

52.22.118.132
secondary (or “non-existent”)

primary
36

Recursive name resolution: flexibility

Infrastructure allows for different configurations
¢ authoritative-only servers: answer queries on zones they are responsible for
o fast resolution, no forwarding, no cache

+ caching / forwarding servers: answer queries on any public domain name

& recursive search / request forwarding, caching for speed, first-hop resolvers
e primary / secondary servers: authoritative servers replicating DNS data of their domains

+ public / private servers: control access to protected resources within an organization

37

Recursive name resolution: benefits

Why DNS uses non-authoritative name servers (that is, recursive resolution)?
¢ for more scalability & locality

¢ high query loads can saturate the response capacity of primary servers

¢ secondary do not have to store large volumes of DNS entries

¢ cached recently queried domain names speed up searches due to locality of queries
+ for added security / locality / scalability alone — not quite

¢ e.g., non-authoritative name servers are untrusted and thus possibly compromised

38

39

DNS integrity: Protocols
DNSSEC & NSEC

DNS as a (distributed) database-as-a-service

source

DB
DNS entries: subset of cached queried entries
<netflix.com, 52.22.118.132> (or information of other resolvers)
‘ please resolve netflix.com

Ty <

L >

; IPis 52.22.118.132 % L |

o . .
- . (or “aWa2j3netflix.com
“primary” secondary

is @ non-existent domain”)
name server name server
40

A critical asset prone to attacks

Signed maIiCious

digest ¢
source server

“is answer correct?”

answer

+ verification
proof + signed digest

availability / confidentiality

41

DNS spoofing (or cache poisoning)

The attacker acts as the DNS server in order to redirect the user to malicious sites

Please convert www.microsoft.com

W
o
|

User Attacker DNS server

207.46.197.32

A

Received too
late; ignored

42

DNSSEC & NSEC

Security extension of DNS protocol to protect integrity of DNS data
e correct resolution, origin authentication, authenticated denial of existence
+ specifications made by Internet Engineering Task Force (IETF) via RFCs
¢ an RFC (request for comments) is a suggested solution under peer review
+ challenges: backward-compatible, simplicity, confidentiality, who signs

¢ NSEC (next secure record): extension that provides proofs of denial of existence

43

DNSSEC & NSEC: core idea

signed

digest
source

DNSSEC protocol: each DNS entry is pre-signed by primary name server

b d
g

server
answer
DB -

proof + signed digest

“is answer correct?”

verification

NSEC protocol:
 domain names are lexicographically ordered and then each pair of neighboring
existing domain names is pre-signed by the primary name server

* non-existing names, e.g., aWa2j3netflix.com are proved by providing this pair
“containing” missed query name, e.g., <awa.com, awb.com>

44

DNSSEC: example

Each entry <domain name, IP address> in the database is individually signed by a primary

DNS server and uploaded to secondary DNS servers in signed form
signing key

/sl

please resolve e.com

>

e.com resolves to IP, .o

Zone names

- = verification

a.com, IP, .o, prOOf' Ce &l Pe = <e'(:oml":’e.com>

Zone names 8 = —

& a.com, 1P, om 8e.com, Pecom ey dpnatine
z.com, IP, com using known

& c.com, IPc com public key

e.com, IP. com
& z.com, IP; .om

45

NSEC: example

Additionally, pairs of consecutive (in alphabetical order) domain names are individually

signed by a primary DNS server and uploaded to secondary DNS servers in signed form
signing key

231' o~

Zone names

please resolve b.com

>
domain name b.com doesn’t exist

- proof: o, &, p; = <a.com, c.com> Verification
: (0]
c.com } - verify signature
e.com } 02 @ using known
O3 @ public key
- } & check “miss”
a.com

46

47

NSEC vulnerability:
Protocols NSEC3 & NSEC5

The problem

Proofs of non-existing names leak information about other unknown domain names

signing key
ﬁ. please resolve b.com

L 4

>
L
domain name b.com doesn’t exist
ZCRe najes proof: o; &, p; = <a.com, c.com> Verification
a.com g,

- : verify signature
eaked Intormation using known

c.com
o
ccom” 102 & .
- & public key
z.com 3 user asked for b.com but g check “miss”
a.com O4 @ also learned for a.com & c.com

48

Zone enumeration attack: Main idea

An attacker can simply act as a “querier” to learn target organization’s network structure!

signing key

Zone names

a.com
c.com
e.com
Z.com
a.com

please resolve b.com

>
domain name b.com doesn’t exist

proof: o, @, p, = <a.com, c.com> Verification

verify signature

exploit the “leak-domain-names” “Si”f”'f”ﬁw”
i C Ke
vulnerability of NSEC to learn the S
. _ & check “miss
domain names of an entire zone

49

Zone enumeration attack: Example

An attacker can simply act as a “querier” to learn target organization’s network structure!

signing key
resolve bS.com, d#.com, e%.com
Ly < =
L s
: none exists
2 e , P1 = <a.com, c.com> Verification

proof: o,

da.com
- } 2l proof: o, 8, P2 = <c.cOM, €.COM> .(ify signature
using known

2
e.com }} O;ae proof: o3 @, p3 = <e.com, z.com> public key

Z.com

= & check “miss”
=l 2 @ ask for non-existing names
to get all possible proofs

50

Zone enumeration attack: Result

An attacker can simply act as a “querier” to learn target organization’s network structure!

signing key

>
none exists
Zone names ask for non-existing names Zone names
a.com } o to get all possible proofs a.com
c.com c.com
o . : .
e.com }} 2 & This attack may expose private device names e.com
o : :
£ e } 3(;@ (e.g., loT devices which can be toehold for other %-¢0M
a.com . a.com
- @ attacks) or reveal other private data that many

registries may have legal obligations to protect

51

NSEC3: NSEC in the hash domain

please resolve b.com

<

>
b.com is a non-existent domain

proof: o3 @ , P3 = <dded5,zrit5>

Zone names
a.com albb5 23ced”] ©
hash h 23ced sortl albb5s 1 @
c.com ;
e.com Zrits dde45 } asked for b.com but
> com ddeas S } > & learned h(e.com) & h(z.com)
23ced

h(b.com) = ntwo4
e.g., h is SHA-256

NSECS5: A secure solution

please resolve b.com

<
>

b.com is a non-existent domain

proof: 03@ , P3 = <dde45,zrit5>
RSA-signature of f(b.com)

Zone hames
a.com albb5 23ced }01 @
hash h’ sort
c.com I 23ced a1bb5
e.com Zrits dde45 } asked for b.com but
7.com dde4s it } o & learned h’(e.com) & h’(z.com)
23ced

h’(b.com) = ntwo4

h: as in NSEC3 h’(x) = h(RSA-Sign(%@, f(x)))

f: “message transformation” hash

e : s = | I\ iUl 1L B

S o S o e e e
= s s S e e
e e e

2 = s =

| e R Z T

e = e s R S
s e e S Tene e
- B = e %c“ﬁ%ﬂ' s

e

e

%};'&# e SR e e e 55 > 1 2 3
iy % = = = iy e e 5 e 5 e 5 5 5

= = = ,
e e - o T
e = o= 2 e S s

3&.
=

The RSA algorithm (for encryption)

General case Example
Setup (run by a given user) Setup
¢ n=p-q,with pand g primes ¢ p=7,q=17,n=7-17=119
¢ erelatively primetod(n)=(p-1)(q-1) ¢ e=5¢d(n)=6-16=96
¢ dinverse of ein Zy, e d=77
Keys Keys
¢ public key is Kpk = (n, e) ¢ publickeyis (119, 5)
¢ private keyis K =d ¢ private key is 77
Encryption Encryption
¢ C=Me®mod n for plaintext M in Z, ¢ C=199mod119=66forM=19in Z;;9
Decryption Decryption

¢ M=Cimodn ¢ M=66'""mod119=19

55

Another complete example

¢ Setup ¢ Encryption
ep=5q9q=11,n=5-11=55 ¢ C=M:3mod 55 for M in Zs
ed(n)=4-10=40 ¢ Decryption

ee=3,d=27 (3:27=81=240+1) ¢ M=C? mod 55

7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

56

Correctness of RSA

Given Analysis
Setup Need to show
¢ n=p-q, with pand g primes e Me¢=Mmodp-q
¢ e relatively primeto d(n)=(p-1)(q-1) Use (1) and apply (2) for prime p
¢ dinverse of ein Zy, (1) e Med=Med-1M = (MP-1)hia-l) M
Encryption ¢ Med=1ha1) M mod p=Mmod p
¢ C=Me®emod n for plaintext M in Z, Similarly (w.r.t. prime q)
Decryption ¢ Med=Mmodq
¢ M=C'modn Thus, since p, g are co-primes
Fermat’s Little Theorem (2) e Me9=Mmodp-q

¢ for prime p, non-zerox: x> modp =1

57

A useful symmetry

[1] RSA setting
¢ modulon=p-q, p &qgare primes, public & private keys (e,d): d - e =1 mod (p-1)(g-1)

[2] RSA operations involve exponentiations, thus they are interchangeable

e C = M® modn (encryption of plaintext M in Z,,)
e M = €4 modn (decryption of ciphertext Cin Z,)
Indeed, their order of execution does not matter: (Me)d = (M9) e mod n

[3] RSA operations involve exponents that “cancel out”, thus they are complementary

o xPUal)modn=1 (Euler’s Theorem)

Indeed, they invert each other: (Me¢)d =(Md)e =Med = MklP-1)a-1)+l mod n
=(Mp-lal)k. M =1k.M =Mmodn

58

Sighing with RSA

RSA functions are complementary & interchangeable w.r.t. order of execution

¢ core property: M®d = M mod p - ¢ for any message M in Z,

RSA cryptosystem lends itself to a signature scheme

¢ ‘reverse’ use of keys is possible : (M9)e =M mod p - q
¢ signing algorithm Sign(M,d,n): 6 = M9 mod n for message M in Z,

+ verifying algorithm Vrfy(o,M,e,n): return M == ¢® mod n

59

The RSA algorithm (for signing)

General case Example
Setup (run by a given user) Setup
¢ n=p-q,with pand g primes ¢ p=7,q=17,n=7-17=119
¢ erelatively primetod(n)=(p-1)(q-1) ¢ e=5¢d(n)=6-16=96
¢ dinverse of ein Zy, e d=77
Keys (same as in encryption) Keys
¢ public key is Kpk = (n, e) ¢ publickeyis (119, 5)
¢ private keyis K =d ¢ private key is 77
Sign Signing
¢ o =M9mod n for message M in Z, ¢ 0=66""mod119=19for M =66 inZ;;
Verify Verification

¢ CheckifM=0°modn ¢ CheckifM=19>mod 119 =66

60

Digital sighatures & hashing

Very often digital signatures are used with hash functions
¢ the hash of a message is signed, instead of the message itself

Signing message M

+ let h be a cryptographic hash function, assume RSA setting (n, d, e)
¢ compute signature o on message M as: 6 = h(M)4 mod n
¢ sendo, M

Verifying signature o
¢ use public key (e, n) to compute (candidate) hash value H = 6® mod n
¢ if H=h(M) output ACCEPT, else output REJECT

61

Security of RSA

Based on difficulty of factoring large numbers (into large primes),i.e., n=p-qintop, g
¢ note that for RSA to be secure, both p and g must be large primes
¢ widely believed to hold true
¢ since 1978, subject of extensive cryptanalysis without any serious flaws found
¢ best known algorithm takes exponential time in security parameter (key length |n|)
¢ how can you break RSA if you can factor?

Current practice is using 2,048-bit long RSA keys (617 decimal digits)

¢ estimated computing/memory resources needed I THH NS PCs Memory
to factor an RSA number within one year
430 1 128MB
760 215,000 4GB
1,020 342x106 170GB
= 1,620 1.6x10%° 120TB

RSA challenges

Challenges for breaking the RSA cryptosystem of various key lengths (i.e., |n])
¢ known in the form RSA-key bit length’ expressed in bits or decimal digits
& provide empirical evidence/confidence on strength of specific RSA instantiations
Known attacks
¢ RSA-155 (512-bit) factored in 4 mo. using 35.7 CPU-years or 8000 Mips-years (1999) and 292 machines

¢ 160 175-400MHz SGI/Sun, 8 250MHz SGI/Origin, 120 300-450MHz Pent. ll, 4 500MHz Digital/Compagq
¢ RSA-640 factored in 5 mo. using 30 2.2GHz CPU-years (2005)

¢ RSA-220 (729-bit) factored in 5 mo. using 30 2.2GHz CPU-years (2005)
¢ RSA-232 (768-bit) factored in 2 years using parallel computers 2K CPU-years (1-core 2.2GHz AMD Opteron) (2009)

Most interesting challenges
+ prizes for factoring RSA-1024, RSA-2048 is S100K, S200K — estimated at 800K, 20B Mips-centuries

63

Deriving an RSA key pair

public key is pair of integers (e,n), secret key is (d, n) or d
+ the value of n should be quite large, a product of two large primes, p and g
¢ often p, q are nearly 100 digits each, so n ~= 200 decimal digits (~512 bits)
¢ but 2048-bit keys are becoming a standard requirement nowadays
+ the larger the value of n the harder to factor to infer p and g
¢ but also the slower to process messages
+ a relatively large integer e is chosen
¢ e.g., by choosing e as a prime that is larger than both (p - 1) and (g - 1)
¢ why?
¢ dischosens.t.e-d=1mod (p-1)(q-1)

¢ how?

64

Discussion on RSA

¢ Assumep=5,qg=11,n=5-11=55,¢d(n)=40,e=3,d =27
¢ why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
o recall that the ciphertext is C = M3 mod 55 for M in Zgs

7 8 9 10 11 12 13 14 15 16 17 18

M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

65

Discussion on RSA

¢ Assumep=5,qg=11,n=5-11=55,¢d(n)=40,e=3,d =27
¢ why encrypting small messages, e.g.,, M = 2, 3, 4 is tricky?
o recall that the ciphertext is C = M3 mod 55 for M in Zgs
¢ Assume n =20434394384355534343545428943483434356091 =p - q
¢ can e be the number 43432534534345367
¢ Are there problems with applying RSA in practice?
¢ what other algorithms are required to be available to the user?
¢ Are there problem with respect to RSA security?
¢ does it satisfy CPA (advanced) security?

66

Algorithmic issues

The implementation of the RSA cryptosystem requires various algorithms

¢ Main issues

¢ representation of integers of arbitrarily large size; and

¢ arithmetic operations on them, namely computing modular powers

¢ Required algorithms (at setup)

*

*

*

generation of random numbers of a given number of bits (to compute candidates p, q)
primality testing (to check that candidates p, q are prime)
computation of the GCD (to verify that e and ¢(n) are relatively prime)

computation of the multiplicative inverse (to compute d from e)

67

Pseudo-primality testing

Testing whether a number is prime (primality testing) is a difficult problem

An integer n > 2 is said to be a base-x pseudo-prime if
¢ x""1modn=1 (Fermat’s little theorem)
¢ Composite base-x pseudo-primes are rare

¢ arandom 100-bit integer is a composite base-2 pseudo-prime
with probability less than 1013
¢ the smallest composite base-2 pseudo-prime is 341
¢ Base-x pseudo-primality testing for an integer n
¢ check whetherx"-1modn=1
¢ can be performed efficiently with the repeated squaring algorithm

68

Security properties

¢ Plain RSA is deterministic

¢ why is this a problem?

¢ Plain RSA is also homomorphic

¢ what does this mean?

¢ multiply ciphertexts to get ciphertext of multiplication!
¢ [(m;).mod N][(m,)¢ mod N] = (m;m,)¢ mod N

¢ however, not additively homomorphic

69

Real-world usage of RSA

¢ Randomized RSA

¢ to encrypt message M under an RSA public key (e,n), generate a new
random session AES key K, compute the ciphertext as [K® mod n, AES,(M)]

¢ prevents an adversary distinguishing two encryptions of the same M since
K is chosen at random every time encryption takes place

¢ Optimal Asymmetric Encryption Padding (OAEP)

o roughly, to encrypt M, choose random r, encode M as
M’ =[X=M®@® Hy(r), Y=r ® H,(X)] where H, and H, are cryptographic
hash functions, then encrypt it as (M’) e mod n

70

Summary of message-authentication crypto tools

Yes Yes Yes
Crpspian | ore oot e e 150

