
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 7: Cryptography VI
Co-Instructor: Nikos Triandopoulos

February 13, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 1 is due in 1 week from today (Thu, Feb 20)

u Homework 1 is out and due in 2 weeks from today (Thu, Feb 27)

u Ed Discussion, Top Hat (code: 821033), Gradescope (set up for Project 1 & HW1)

u Where we are

u Part I: Crypto – we will have a revision in our next class (Thu, Feb 27)
u Part II: Web
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u Cryptography

u Hash functions

u Applications to security

u Public-key crypto

u RSA crypto system
u DH key agreement protocol

u Authentication

u System & user authentication
u Passwords & password cracking

3

7.0 Cryptographic hash
functions: Applications to
security

4

Generally: Message digest (= hash value = fingerprint)
Short secure description of data (primarily used to detect changes)

5

Encrypted for
authenticity

M

Hash
function

Message
digest

one way
compression

H(·)

M

H(M)

A crypto hash function is not
 an encryption scheme,
a MAC tag or signature,

or anything else

other than a random mapping
(thus collision resistant) into
a fixed-length hash domain.

Answer: It depends on M’s message space & prob. distribution

Question: Does H(M) “conceal” M?

M||r
random r

H(M||r)

Application 1: Digital envelops

A commitment scheme implements a physical envelop
u two operations

u commit(x, r) = C
u i.e., put message x into an envelop (using randomness r)

u commit(x, r) = h(x || r)
u hiding property: you cannot see through an (opaque) envelop

u open(C, m, r) = ACCEPT or REJECT

u i.e., open envelop (using r) to check that it has not been tampered with
u open(C, m, r): check if h(m || r) =? C

u binding property: you cannot change the contents of a sealed envelop

6

Application 1: Security properties

Hiding: perfect/computational opaqueness
u Similar to indistinguishability: commitment reveals nothing about message

u adversary selects two messages x1, x2 which he gives to challenger

u challenger randomly selects bit b, computes (randomness and) commitment Ci of xi

u challenger gives Cb to adversary, who wins if he can find bit b (better than guessing)

Binding: perfect/computational sealing
u Similar to unforgeability: cannot find a commitment “collision”

u adversary selects two distinct messages x1, x2 and two corresponding values r1, r2

u adversary wins if commit(x1, r1) = commit(x2, r2)

7

Example 1: Fair digital coin flipping

Problem

u To decide who will do the dishes: Alice is to call the coin flip & Bob is to flip the coin

u But Alice may change her mind, Bob may skew the result

Protocol

u Alice calls the coin flip x but only tells Bob a commitment C of x

u Bob flips the coin & reports the result R

u Alice reveals her call x & Bob verifies that revealed call x “matches” commitment C

u If Alice’s verified call x matches Bob’s result, i.e., x = R, Alice wins; else Bob wins

8

Example 1: Fair digital coin flipping (cont.)

Protocol

u Alice calls the coin flip x but only tells Bob a commitment C of x

u Bob flips the coin & reports the result R

u Alice reveals her call x & Bob verifies that revealed call x “matches” commitment C

u If Alice’s verified call x matches Bob’s result, i.e., x = R, Alice wins; else Bob wins

Security

u Hiding: Bob gains nothing by seeing Alice’s commitment C or skewing coin toss R

u Binding: Alice cannot change her mind x after the coin R is announced

9

Application 2: Forward-secure key rotation
Alice and Bob secretly communicate using symmetric encryption
u Eve intercepts their messages and later breaks into Bob’s machine to steal the shared key

10

s1 = h s2 h s3 h …sk h sk+1

key
leakage

k

Alice Bob

key k
key k

✗

Application 3: Hash values as file identifiers

Consider a cryptographic hash function H applied on a file F

u the hash (or digest) H(M) of F serves as a unique identifier for F

u “uniqueness”

u if another file F’ has the same identifier, this contradicts the security of H

u thus

u the hash H(F) of F is like a fingerprint
u one can check whether two files are equal by comparing their digests

Many real-life applications employ this simple idea!

11

Examples
3.1 Virus fingerprinting

u When you perform a virus scan over your
computer, the virus scanner application tries
to identify and block or quarantine programs
or files that contain viruses

u This search is primarily based on comparing
the digest of your files against a database of
the digests of already known viruses

u The same technique is used for confirming
that is safe to download an application or
open an email attachment

3.2 Peer-to-peer file sharing
u In distributed file-sharing applications (e.g., systems

allowing users to contribute contents that are shared
amongst each other), both shared files and
participating peer nodes (e.g., their IP addresses) are
uniquely mapped into identifiers in a hash range

u When a given file is added in the system it is
consistently stored at peer nodes that are
responsible to store files those digests fall in a
certain sub-range

u When a user looks up a file, routing tables (storing
values in the hash range) are used to eventually
locate one of the machines storing the searched file

12

Example 3.3: Data deduplication

Goal: Elimination of duplicate data

u Consider a cloud provider, e.g., Gmail or
Dropbox, storing data from numerous users.

u A vast majority of stored data are duplicates;
e.g., think of how many users store the same
email attachments, or a popular video…

u Huge cost savings result from deduplication:
u a provider stores identical contents

possessed by different users once!

u this is completely transparent to end users!

Idea: Check redundancy via hashing

u Files can be reliably checked whether they are
duplicates by comparing their digests.

u When a user is ready to upload a new file to the
cloud, the file’s digest is first uploaded.

u The provider checks to find a possible duplicate,
in which case a pointer to this file is added.

u Otherwise, the file is being uploaded literally

u This approach saves both storage and bandwidth!

13

Application 4: Concealing stored passwords

Goal: User authentication

u Today, passwords are the dominant means for
user authentication, i.e., the process of
verifying the identity of a user (requesting
access to some computing resource).

u This is a “something you know” type of user
authentication, assuming that only the
legitimate user knows the correct password.

u When you provide your password to a
computer system (e.g., to a server through a
web interface), the system checks if your
submitted password matches the password
that was initially stored in the system at setup.

Problem: How to protect password files

u If password are stored at the server in the clear,
an attacker can steal the password file after
breaking into the authentication server – this type
of attack happens routinely nowadays…

u Password hashing involved having the server
storing the hashes of the users passwords.

u Thus, even if a password file leaks to an attacker,
the onewayness of the used hash function can
guarantee some protections against user-
impersonation simply by providing the stolen
password for a victim user.

14

Example 4: Password storage

Plaintext Concealed via hashing

15

Subject to “concealment” preconditions

If fully concealed, are we safe?
Any hash pre-image leads to impersonation

Application 5: Hash-and-digitally-sign

Very often digital signatures are used with hash functions
u the hash of a message is signed, instead of the message itself

Signing message M
u let h be a cryptographic hash function, assume RSA setting (n, d, e)
u compute signature σ = h(M)d mod n
u send σ, M

Verifying signature σ
u use public key (e,n)
u compute Η = σe mod n
u if H = h(M) output ACCEPT, else output REJECΤ

16

Application 6: The Merkle tree

An alternative (to Merkle-Damgård) method to achieve domain extension

17

h14

d

h58h (h12 || h34) = = h (h56 || h78)

= h (h14 || h48)

h12h (h1 || h2) = h34

h56
h78

h1

let hi = h(Fi), 1 ≤ i ≤ n
h2 … h7 h8

server user

files

(1)

files = (F1, F2, …, F7, F8)

server

files

user(2) upload files

Example 6: Secure cloud storage

give me
file F1

server

files

here it is, F1’
user(4)

F1’ = #@$@!#^@$^… (altered)

Example 6: Secure cloud storage

server

files

user (3)

files = (F1, F2, …, F7, F8)

Example 6: Secure cloud storage – per-file hashing

Bob wants to outsource storage of files F1, F2,…,F8 to Dropbox & check their integrity

u Bob stores random r
(& keeps it secret)

u Bob sends to Dropbox

u files F1, F2,…,F8

u hashes h(r||F1), h(r||F2),…, h(r||F8)

Every time Bob reads a file Fi, he also reads h(r||Fi) to verify Fi’s integrity

u any problems with writes?

20

server user

files = (F1, F2, …, F7, F8)

random r

files & hashes

rej

acc

Fi
h(r||Fi)

1. use CR hash function h to compute over all files a digest d, |d| << |F|

server

files

user(2)

d

2. upload files

Example 6: Secure cloud storage – per-file-set hashing

server user

files

(1)

files = (F1, F2, …, F7, F8)

Example 6: Secure cloud storage – integrity checking
give me
file F1

server

files

user

d

(3)

4. verification

+
3. “proof”

(or helper information)

server

files

2. here it is, F1’
user

“is F1’ intact?”
(4)

d

rej

acc

server

files

user

d

(4)
+

“proof”
(or helper information)

here it is, F1’

verification
“is F1’ intact?”

u user has
u authentic digest d (locally stored)
u file F1’ (to be checked/verified as it can be altered)
u proof (to help checking integrity, but it can be maliciously chosen)

u user locally verifies received answer
u combine the file F1’ with the proof to re-compute candidate digest d’
u check if d’ = d
u if yes, then F1 is intact; otherwise tampering is detected!

Example 6: Secure cloud storage – verification

rej

acc

Example 6: Data authentication via the Merkle tree

24

h14

d

h58h (h12 || h34) = = h (h56 || h78)

= h (h14 || h48)

h12h (h1 || h2) = h34

h56 h78

h1 let hi = h(Fi), 1 ≤ i ≤ 8h2 … h7 h8

server

files

user

d

(4)
+

“proof”
(or helper information)

here it is, F1’

verification
“is F1’ intact?”

rej

acc

proof is red hash path
answer is orange hash

digest is the green root hash

compute candidate d’
based on answer & proof

d’ = d

d’ ≠ d

7.1 Number theory
(for public key crypto)

25

Multiplicative inverses

The residues modulo a positive integer n comprise set Zn = {0,1,2,…,n - 1}

u let x and y be two elements in Zn such that x y mod n = 1

u we say: y is the multiplicative inverse of x in Zn

u we write: y = x-1

Theorem

 An element x in Zn has a multiplicative inverse iff x, n are relatively prime

26

Multiplicative inverses (cont.)

u e.g., multiplicative inverses of the residues modulo 10 are 1, 3, 7, 9

u e.g., multiplicative inverses of the residues modulo 11 are all non-zero elements

x 0 1 2 3 4 5 6 7 8 9
x-1 1 7 3 9

27

x 0 1 2 3 4 5 6 7 8 9 10
x-1 1 6 4 3 9 2 8 7 5 10

Computing multiplicative inverses

Fact
u given two numbers a and b, there exist integers x, y s.t.

x a + y b = gcd(a,b)
which can be computed efficiently by the extended Euclidean algorithm.

Thus

u the multiplicative inverse of a in Zb exists iff gcd(a, b) = 1
u i.e., iff the extended Euclidean algorithm computes x and y s.t. x a + y b = 1

u in this case, the multiplicative inverse of a in Zb is x

28

Euclidean GCD algorithm

Computes the greater common divisor
by repeatedly applying the formula
 gcd(a, b) = gcd(b, a mod b)

u example

u gcd(412, 260) = 4

29

Algorithm EuclidGCD(a, b)
 Input integers a and b
 Output gcd(a, b)

 if b = 0
 return a
 else
 return EuclidGCD(b, a mod b)

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

Extended Euclidean algorithm

Theorem
 If, given positive integers a and b,

d is the smallest positive integer
s.t. d = ia + jb, for some integers
i and j, then d = gcd(a, b)

u example
u a = 21, b = 15

u d = 3, i = 3, j = -4

u 3 = 3×21 + (-4)×15 = 63 - 60 = 3

30

Algorithm Extended-Euclid(a, b)
 Input integers a and b
 Output gcd(a, b), i and j
 s.t. ia+jb = gcd(a,b)
 if b = 0
 return (a,1,0)
 (dʹ, xʹ, yʹ) = Extended-Euclid(b, a mod b)
 (d, x, y) = (dʹ, yʹ, xʹ - [a/b]yʹ)
 return (d, x, y)

Multiplicative group

A set of elements where multiplication � is defined

u closure, associativity, identity & inverses

u multiplicative groups Z*
n, defined w.r.t. Zn (residues modulo n)

u subsets of Zn containing all integers that are relative prime to n

u CASE 1: if n is a prime number, then all non-zero elements in Zn have an inverse

u Z*
7 = {1,2,3,4,5,6}, n = 7

u 2 � 4 = 1 (mod 7), 3 � 5 = 1 (mod 7), 6 � 6 = 1 (mod 7), 1 � 1 = 1 (mod 7)

u CASE 2: if n is not prime, then not all integers in Zn have an inverse

u Z*
10 = {1,3,7,9}, n = 10

u 3 � 7 = 1 (mod 10), 9 � 9 = 1 (mod 10), 1 � 1 = 1 (mod 10)

31

Order of a multiplicative group

Order of a group = cardinality of the group

u multiplicative groups for Z*
n

u the totient function φ(n) denotes the order of Z*
n , i.e., φ(n) = |Z*

n|

u if n = p is prime, then the order of Z*
p={1,2,…,p-1} is p-1, i.e., φ(n) = p-1

u e.g., Z*
7 = {1,2,3,4,5,6}, n = 7, φ(7) = 6

u if n is not prime, φ(n) = n(1-1/p1)(1-1/p2)…(1-1/pk), where n = pe1
1pe2

2…pek
k

u e.g., Z*
10 = {1,3,7,9}, n = 10, φ(10) = 4

u if n = p q, where p and q are distinct primes, then φ(n) = (p-1)(q-1)

u difficult problem: given n = pq, where p, q are primes, find p and q or φ(n)

32

Factoring problem

Fermat’s Little Theorem

Theorem

 If p is a prime, then for each nonzero residue x in Zp, we have xp - 1 mod p = 1

u example (p = 5):

14 mod 5 = 1 24 mod 5 = 16 mod 5 = 1

34 mod 5 = 81 mod 5 = 1 44 mod 5 = 256 mod 5 = 1

Corollary

 If p is a prime, then the multiplicative inverse of each x in Z*
p is xp - 2 mod p

u proof: x(xp - 2 mod p) mod p = xxp - 2 mod p = xp - 1 mod p = 1

33

Euler’s Theorem

Theorem

 For each element x in Z*
n, we have xφ(n) mod n = 1

u example (n = 10)

u Z*
10 = {1,3,7,9}, n = 10, φ(10) = 4

u 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1

u 7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1

u 9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1

34

Computing in the exponent

For the multiplicative group Z*
n, we can reduce the exponent modulo φ(n)

u xy mod n = xk φ(n) + r mod n = (xφ(n))k xr mod n = xr mod n = x y mod φ(n) mod n

Corollary: For Z*p, we can reduce the exponent modulo p-1

u example

u Z*10 = {1,3,7,9}, n = 10, φ(10) = 4

u 31590 mod 10 = 31590 mod 4 mod 10 = 32 mod 10 = 9

u example

u Z*p = {1,2,…,p - 1}, p = 19, φ(19) = 18

u 1539 mod 19 = 1539 mod 18 mod 19 = 153 mod 19 = 12

35

Modular powers

Repeated squaring algorithm

Speeds up computation of ap mod n
u write the exponent p in binary

p = pb - 1 pb - 2 … p1 p0

u start with Q1 = apb - 1 mod n
u repeatedly compute

Qi = ((Qi - 1)2 mod n)apb - i mod n
u obtain Qb = ap mod n

Total O (log p) arithmetic operations

Example

u 318 mod 19 (18 = 10010)
u Q1 = 31 mod 19 = 3

u Q2 = (32 mod 19)30 mod 19 = 9
u Q3 = (92 mod 19)30 mod 19 = 81 mod 19 =

5
u Q4 = (52 mod 19)31 mod 19 =

 (25 mod 19)3 mod 19 = 18 mod 19 = 18

u Q5 = (182 mod 19)30 mod 19 = (324 mod
19) mod 19 = 17×19 + 1 mod 19 = 1

36

Powers

Let p be a prime
u the sequences of successive powers of the elements in Z*

p exhibit repeating
subsequences

u the sizes of the repeating subsequences and the number of their
repetitions are the divisors of p – 1

u example, p = 7

37

x x2 x3 x4 x5 x6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

7.1.1 DH key agreement

38

Computational assumption

Discrete-log setting
u cyclic G = (Zp

*, ·) of order p – 1 generated by g, prime p of length t (|p|=t)

Problem
u given G, g, p and x in Zp

*, compute the discrete log k of x (mod p)

u we know that x = gk mod p for some unique k in {0, 1, …, p-2}… but

Discrete log assumption
u for groups of specific structure, solving the discrete log problem is infeasible

u any efficient algorithm finds discrete logs negligibly often (prob = 2-t/2)

Brute force attack
u cleverly enumerate and check O(2t/2) solutions

39

Application: Key-agreement (KA) scheme

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
u instead of meeting in person in a secret place, they want to use the insecure line…

u KA scheme: they run a key-agreement protocol Π to contribute to a shared key K
u correctness: KA = KB

u security: no PPT adversary A, given T, can distinguish K from a trully random one

40

Alice Bob

input 1n

output KA output KB

input 1n

…

transcript T of exchanged messages

A
Eve

Key agreement: Game-based security definition

u scheme Π(1n) runs to generate K = KA = KB and transcript T; random bit b is chosen
u adversary A is given T and kb; if b = 1, then kb = K, else kb is random (both n-bit long)
u A outputs bit b’ and wins if b’ = b
u then: Π is secure if no PPT A wins non-negligibly often

41

(A) Alice Bob

input 1n

output KA output KB

input 1n

…

transcript T of exchanged messages

A (C) T, kb

(B) b is randomly chosen

(D) output b’
(E) A wins iff b’ = bEve

The Diffie-Hellman key-agreement protocol

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
u DH KA scheme Π

u discrete log setting: p, g public, where <g> = Z*
p and p prime

42

Alice Bob

(3) send ga mod p

(4) send gb mod p
(6) set K = gab mod p = (ga mod p)b mod p

(1) randomly pick secret a (2) randomly pick secret b

(5) set K = gab mod p = (gb mod p)a mod p

input 1n input 1n

Eve

Security

u discrete log assumption is necessary but not sufficient

u decisional DH assumption

u given g, ga and gb, gab is computationally indistinguishable from uniform

43

Authenticated Diffie-Hellman

44

ga mod p
gb mod p
gc mod p

gc mod p

Alice computes gac mod p and Bob computes gbc mod p !!!

MITM attacker

Alice Bob

Is CAlice Alice’s certificate?
CAlice, ga mod p, SignAlice(ga mod p)
CBob, gb mod p, SignBob(gb mod p)

Is CBob Bob’s certificate?
CA

YesYes

7.1.2 The RSA algorithm

45

The RSA algorithm (for encryption)
General case
Setup (run by a given user)

u n = p × q, with p and q primes
u e relatively prime to φ(n) = (p - 1)(q - 1)
u d inverse of e in Zφ(n)

Keys
u public key is KPK = (n, e)
u private key is KSK = d

Encryption
u C = Me mod n for plaintext M in Zn

Decryption
u M = Cd mod n

Example

46

Setup
u p = 7, q = 17, n = 7 × 17 = 119
u e = 5, φ(n) = 6 × 16 = 96
u d = 77
Keys
u public key is (119, 5)
u private key is 77
Encryption
u C = 195 mod 119 = 66 for M = 19 in Z119

Decryption
u Μ = 6677 mod 119 = 19

Another complete example

47

u Setup
u p = 5, q = 11, n = 5 × 11 = 55

u φ(n) = 4 × 10 = 40
u e = 3, d = 27 (3×27 = 81 = 2×40 + 1)

u Encryption
u C = Μ3 mod 55 for M in Z55

u Decryption
u Μ = C27 mod 55

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2
M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16
M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

Correctness of RSA
Given
Setup

u n = p × q, with p and q primes
u e relatively prime to φ(n) = (p - 1)(q - 1)
u d inverse of e in Zφ(n) (1)

Encryption
u C = Me mod n for plaintext M in Zn

Decryption
u M = Cd mod n

Fermat’s Little Theorem (2)
u for prime p, non-zero x: xp - 1 mod p = 1

Analysis

48

Need to show
u Med = M mod p × q
Use (1) and apply (2) for prime p
u Med = Med - 1 M = (Mp-1)h(q-1) M
u Med = 1h(q-1) M mod p = M mod p
Similarly (w.r.t. prime q)
u Med = M mod q
Thus, since p, q are co-primes
u Med = M mod p × q

A useful symmetry

[1] RSA setting

u modulo n = p × q, p & q are primes, public & private keys (e,d): d × e = 1 mod (p-1)(q-1)

[2] RSA operations involve exponentiations, thus they are interchangeable

u C = Me mod n (encryption of plaintext M in Zn)

u M = Cd mod n (decryption of ciphertext C in Zn)

Indeed, their order of execution does not matter: (Me) d = (Md) e mod n

[3] RSA operations involve exponents that “cancel out”, thus they are complementary

u x(p-1)(q-1) mod n = 1 (Euler’s Theorem)

Indeed, they invert each other: (Me) d = (Md) e = Med = Mk(p-1)(q-1)+1 mod n

 = (M (p-1)(q-1))k × M = 1k × M = M mod n
49

Signing with RSA

RSA functions are complementary & interchangeable w.r.t. order of execution

u core property: Med = M mod p × q for any message M in Zn

RSA cryptosystem lends itself to a signature scheme

u ‘reverse’ use of keys is possible : (Md)e = M mod p × q

u signing algorithm Sign(M,d,n): σ = Md mod n for message M in Zn

u verifying algorithm Vrfy(σ,M,e,n): return M == σe mod n

50

The RSA algorithm (for signing)
General case
Setup (run by a given user)

u n = p × q, with p and q primes
u e relatively prime to φ(n) = (p - 1)(q - 1)
u d inverse of e in Zφ(n)

Keys (same as in encryption)
u public key is KPK = (n, e)
u private key is KSK = d

Sign
u σ = Md mod n for message M in Zn

Verify
u Check if M = σe mod n

Example

51

Setup
u p = 7, q = 17, n = 7 × 17 = 119
u e = 5, φ(n) = 6 × 16 = 96
u d = 77
Keys
u public key is (119, 5)
u private key is 77
Signing
u σ = 6677 mod 119 = 19 for M = 66 in Z119

Verification
u Check if M = 195 mod 119 = 66

Digital signatures & hashing
Very often digital signatures are used with hash functions
u the hash of a message is signed, instead of the message itself

Signing message M

u let h be a cryptographic hash function, assume RSA setting (n, d, e)
u compute signature σ on message Μ as: σ = h(M)d mod n
u send σ, M

Verifying signature σ
u use public key (e, n) to compute (candidate) hash value Η = σe mod n
u if H = h(M) output ACCEPT, else output REJECΤ

52

Security of RSA

Based on difficulty of factoring large numbers (into large primes), i.e., n = p × q into p, q
u note that for RSA to be secure, both p and q must be large primes
u widely believed to hold true

u since 1978, subject of extensive cryptanalysis without any serious flaws found
u best known algorithm takes exponential time in security parameter (key length |n|)

u how can you break RSA if you can factor?

Current practice is using 2,048-bit long RSA keys (617 decimal digits)

u estimated computing/memory resources needed
to factor an RSA number within one year

53

Length (bits) PCs Memory

430 1 128MB

760 215,000 4GB
1,020 342´106 170GB

1,620 1.6´1015 120TB

RSA challenges

Challenges for breaking the RSA cryptosystem of various key lengths (i.e., |n|)
u known in the form RSA-`key bit length’ expressed in bits or decimal digits

u provide empirical evidence/confidence on strength of specific RSA instantiations

Known attacks
u RSA-155 (512-bit) factored in 4 mo. using 35.7 CPU-years or 8000 Mips-years (1999) and 292 machines

u 160 175-400MHz SGI/Sun, 8 250MHz SGI/Origin, 120 300-450MHz Pent. II, 4 500MHz Digital/Compaq

u RSA-640 factored in 5 mo. using 30 2.2GHz CPU-years (2005)

u RSA-220 (729-bit) factored in 5 mo. using 30 2.2GHz CPU-years (2005)

u RSA-232 (768-bit) factored in 2 years using parallel computers 2K CPU-years (1-core 2.2GHz AMD Opteron) (2009)

Most interesting challenges
u prizes for factoring RSA-1024, RSA-2048 is $100K, $200K – estimated at 800K, 20B Mips-centuries

54

Deriving an RSA key pair
u public key is pair of integers (e,n), secret key is (d, n) or d
u the value of n should be quite large, a product of two large primes, p and q
u often p, q are nearly 100 digits each, so n ~= 200 decimal digits (~512 bits)

u but 2048-bit keys are becoming a standard requirement nowadays

u the larger the value of n the harder to factor to infer p and q
u but also the slower to process messages

u a relatively large integer e is chosen
u e.g., by choosing e as a prime that is larger than both (p − 1) and (q − 1)
u why?

u d is chosen s.t. e × d = 1 mod (p − 1)(q − 1)
u how?

55

Discussion on RSA
u Assume p = 5, q = 11, n = 5 × 11 = 55, φ(n) = 40, e = 3, d = 27

u why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
u recall that the ciphertext is C = Μ3 mod 55 for M in Z55

56

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2
M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16
M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

Discussion on RSA
u Assume p = 5, q = 11, n = 5 × 11 = 55, φ(n) = 40, e = 3, d = 27

u why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
u recall that the ciphertext is C = Μ3 mod 55 for M in Z55

u Assume n = 20434394384355534343545428943483434356091 = p × q
u can e be the number 4343253453434536?

u Are there problems with applying RSA in practice?
u what other algorithms are required to be available to the user?

u Are there problem with respect to RSA security?
u does it satisfy CPA (advanced) security?

57

Algorithmic issues

The implementation of the RSA cryptosystem requires various algorithms

u Main issues
u representation of integers of arbitrarily large size; and

u arithmetic operations on them, namely computing modular powers

u Required algorithms (at setup)
u generation of random numbers of a given number of bits (to compute candidates p, q)

u primality testing (to check that candidates p, q are prime)

u computation of the GCD (to verify that e and φ(n) are relatively prime)

u computation of the multiplicative inverse (to compute d from e)

58

Pseudo-primality testing
Testing whether a number is prime (primality testing) is a difficult problem

An integer n ³ 2 is said to be a base-x pseudo-prime if
u xn - 1 mod n = 1 (Fermat’s little theorem)

u Composite base-x pseudo-primes are rare

u a random 100-bit integer is a composite base-2 pseudo-prime
with probability less than 10-13

u the smallest composite base-2 pseudo-prime is 341
u Base-x pseudo-primality testing for an integer n

u check whether xn - 1 mod n = 1
u can be performed efficiently with the repeated squaring algorithm

59

Security properties

u Plain RSA is deterministic
u why is this a problem?

u Plain RSA is also homomorphic
u what does this mean?
u multiply ciphertexts to get ciphertext of multiplication!
u [(m1)e mod N][(m2)e mod N] = (m1m2)e mod N
u however, not additively homomorphic

60

Real-world usage of RSA

u Randomized RSA
u to encrypt message M under an RSA public key (e,n), generate a new

random session AES key K, compute the ciphertext as [Ke mod n, AESK(M)]
u prevents an adversary distinguishing two encryptions of the same M since

K is chosen at random every time encryption takes place

u Optimal Asymmetric Encryption Padding (OAEP)
u roughly, to encrypt M, choose random r, encode M as

M’ = [X = M Å H1(r) , Y= r Å H2(X)] where H1 and H2 are cryptographic
hash functions, then encrypt it as (M’) e mod n

61

7.2 On message
authentication

62

Recall: Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions (what it means for a crypto primitive to be “secure”?)

u B) precise assumptions (which forms of attacks are allowed – and which aren’t?)

u C) provable security (why a candidate instantiation is indeed secure – or not)?

63

AMac(k,)TΠ

Computational MAC security

64

m1

Gen(1n) → k

t1

MAC scheme
Π = (Gen, Mac, Vrfy) security parameter 1n

We say that Π is secure if for all PPT A, there exists a negligible function negl so that

Game Mac-forgeA, Π(n)

…

m2

t2

m*,t*

= 1 iff 1. Vrfyk(m*,t*) = 1 &
 2. m* not in Q

Q = m1, m2, …

Pr[Mac-forgeA, Π(n) = 1] ≤ negl(n)

Mack(mi) → ti

AMac(k,)TΠ

Strong MAC

65

m1

Gen(1n) → k

t1

MAC scheme
Π = (Gen, Mac, Vrfy) security parameter 1n

We say that Π is strongly secure if for all PPT A, there exists a negligible function negl so that

Game Mac-sforgeA, Π(n)

…

m2

t2

m*,t*

= 1 iff 1. Vrfyk(m*,t*) = 1 &
 2. (m*,t*) not in Q

Q = (m1,t1), (m2,t2) …

Pr[Mac-sforgeA, Π(n) = 1] ≤ negl(n)

Mack(mi) → ti

AMac(k,),Vrfy(k,)TΠ

(Strong) MAC w/ verification queries

66

m1 or (m1, t1)

Gen(1n) → k

t1 or acc/rej

MAC scheme
Π = (Gen, Mac, Vrfy) security parameter 1n

We say that Π is strongly V-secure if for all PPT A, there exists a negligible function negl so that

Game Mac-sVforgeA, Π(n)

…

m2 or (m2, t2)

t2 or acc/rej

m*,t*

= 1 iff 1. Vrfyk(m*,t*) = 1 &
 2. (m*,t*) not in Q

Q = (m1,t1), (m2,t2) …

Pr[Mac-sVforgeA, Π(n) = 1] ≤ negl(n)

Mack(mi) → ti

Verification queries Vs. timing attacks on MAC verification

In game Mac-sVforgeA, Π(n)
u queries to oracle Verfk() return acc/rej (i.e., a single bit)

In real life
u implicit tag verification is feasible (e.g., by detecting a difference in verifier’s behavior)

u but also an attacker may receive more than this 1-bit info via other “side channels”
u Vrfy(m,t) of a canonical MAC returns acc only if t = Mack(m)

u if implemented using strcmp, then comparison occurs byte by byte until first mismatch

u thus, the time to return rej depends on position of the first unequal byte

u i.e., that attacker may also receive timing-related information

67

Side-channel attack via tag verification w/ timing

u attacker A wishes to forge a verifiable s-byte tag t for target message m
u assume that A knows ti, i.e., the first i bytes of tag t (for some i = 0, 1, …, s-1)

u for j = 0, …, 255
u send verification query (m, tj) where tj = ti || j || (00)s-i-1

u get response resj (probably rej) and measure timej spent for computation of resj

u if timej* is the maximum measured response time, then set ti+1 = ti || j*

u realistic attack
u forged code updates in Xbox 360 to load pirated games into the hardware

u exploited differences of 2.2msec between rejection times!
u 4096 queries are needed to recover a 16-byte tag!

68

Side-channel attack via tag verification (cont.)

Other side-channels can be used
u Padding Oracle Attacks

u Exploits leaked information about tag verification due to padding

u PKCS#7 specifies how messages are unambiguously padded (in modes of operations)

u Attacker get additional information of whether the padding was correct

u E.g., if padding is correct message processing results in longer response time

69

Summary of message-authentication crypto tools

70

Hash
(SHA2-256) MAC Digital signature

Integrity Yes Yes Yes

Authentication No Yes Yes

Non-repudiation No No Yes

Crypto system None Symmetric (AES) Asymmetric (e.g., RSA)

7.3 User authentication

71

User identification & authentication

Identification

u asserting who a person is

Authentication

u proving that a user is who she says she is

u methods

u something the user knows

u something the user is

u something user has

72

Does authentication imply identification?

Suppose that a user

u provides her (login) name and

u uses one of the three methods to authenticate into a computer system
u either terminal or remote server via a web browser

u when does user authentication imply user identification?
u not quite…

73

Example: Something you know

The user has to know some secret to be authenticated
u password, personal identification number (PIN), personal information like home

address, date of birth, name of spouse (“security” questions)

But anybody who obtains your secret “is you…”
u impersonation Vs. delegation
u you leave no trace if you pass your secret to somebody else

What if there is a case of computer misuse?
u i.e., where somebody has logged in using your username & password…

u can you prove your innocence?
u can you prove that you have not divulged your password?

74

Thus…

u a password does not authenticate a person

u successful authentication only implies that the user knew a particular secret

u there is no way of telling the difference between the legitimate user
and an intruder who has obtained that user’s password

u unfortunately: this holds true for almost all of authentication methods…

75

7.3.1 Something you
know – password
authentication

76

Something you know

u passwords
u or PINs

u or answers to “security” questions (e.g., where did you meet your wife?)

77

Problems with passwords

Many attack vectors…

u password “live” in different “places:”
1) user’s brain, 2) channel & 3) authentication server

1) password guessing

u predict weak passwords

2) phishing & spoofing or cached passwords

u deceive users to reveal their password

3) leaked password files

u steal user credentials

78

Password guessing

Infer passwords through guessing

u Low-entropy passwords

u To be easy to remember, passwords are often weak easy-to-predict secrets

u e.g., password is “Password1”

u Password reuse

u To be easy to remember, passwords are often reused across many authentication servers

u e.g., same password for all accounts

79

Distribution of password types

80

One character
0%

Two characters
2%

Three characters
14%

Four characters,
all letters

14%

Five letters,
all same case

22%

Six letters,
lowercase

19%

Words in
dictionaries or
lists of names

15%

Other good
passwords

14%

Graph from an old leaked password file

The point is: Most passwords are weak!

Online dictionary attacks

u Direct brute-force or dictionary attacks against passwords
u employs only the authentication system

u attacker tries to impersonate a victim by trying
u all possible (short length) passwords or
u passwords coming from a known dictionary

u (cf. offline brute-force or dictionary attacks using leaked hashed passwords)

u Countermeasure
u block login & lock account after many consecutive failed authentication attempts

u false negatives…

81

Phishing & spoofing

u Identification and authentication through username and password provide
unilateral authentication

u Computer verifies the user’s identity but the user has no guarantees about
the identity of the party that has received the password

u In phishing and spoofing attacks a party voluntarily sends the password
over a channel, but is misled about the end point of the channel

Spoofing

u Attacker starts a malicious program that presents a fake login screen and
leaves the computer

u If the next user coming to this machine enters username and password on
the fake login screen, these values are captured by the malicious program

u login is then typically aborted with a (fake) error message and the spoofing
program terminates

u control returns to operating system, which now prompts the user with a genuine
login request

u thus, the victim does not suspect that something wrong has happened

u the victim may think that the password was mistyped…

Counteracting password spoofing
u display number of failed logins

u may indicate to the user that an attack has happened

u trusted path

u guarantee that user communicates with the operating system and not with a spoofing
program

u mutual authentication
u user authenticated to system, system authenticated to user

84

Phishing

u attacker impersonates the system to trick a user into releasing the password

u e.g.,

u a message could claim to come from a service you are using

u tell you about an upgrade of the security procedures

u and ask you to enter your username and password
at the new security site that will offer stronger protection

u attacker impersonates the user to trick a system operator into releasing the
password to the attacker

u social engineering

Cached passwords

u description of login has been quite abstract

u password travels directly from user to the password checking routine

u in reality, it will be held temporarily in intermediate storage locations

u e.g., like buffers, caches, or a web page

u management of these storage locations is normally beyond user’s control

u a password may be kept longer than the user has bargained for

86

Leaked password files

u Breach authentication server to steal user credentials
u e.g., plaintext passwords

u Countermeasures
u protect passwords via encryption (e.g., a symmetric-key cipher)

u subject to keeping the secret key secure against the server’s compromise…

u hard to achieve in practice…

u concealed password via hashing

u subject to meeting conditions for secret concealment via hashing…

87

Protecting the password file

Operating system maintains a password file (with user names & passwords)

u attacker could try to compromise its confidentiality or integrity

u options for protecting the password file

u cryptographic protection

u access control enforced by the operating system

u combination of cryptographic protection and access control,
possibly with further measures to slow down dictionary attacks

88

Access control settings

u only privileged users must have write access to the password file
u an attacker could get access to the data of

other users simply by changing their password
u even if it is protected by cryptographic means

u if read access is restricted to privileged users, passwords could be stored
unencrypted
u in theory – in practice, bad idea because of breaches

u if password file contains data required by unprivileged users, passwords must be
“encrypted”; such a leaked file can still be used in dictionary attacks
u typical example is /etc/passwd in Unix

u many Unix versions store encrypted passwords in a shadow password file (not publicly
accessible)

Example: Password storage via hashing

Plaintext Concealed

90

Subject to “concealment” preconditions

If fully concealed, are we safe?
Any hash pre-image leads to impersonation

Hashing passwords is not enough

An immediate control against password leakage through stolen password files, involves
concealing passwords stored at the authentication server via hashing

Why are offline dictionary attacks quite effective using leaked hashed passwords in practice?

u Most hashed passwords are weak passwords

u Thus, they can be “cracked”

u Invert the hash

u Find a 2nd preimage of the hash

91

Password cracking

Given leaked hashed passwords, recover passwords
u Use exhaustive search by hashing over guessed passwords…

u brute-force attack: try all possibilities

u dictionary attacks: try all words in a dictionary & variations of them

u rainbow tables: try possibilities in a systematic way via a data structure

u These methods impose different time-space trade-offs on attacker’s workload

u preprocessing is often very useful, e.g.,

u precompute a dictionary-based set of password-hash pairs

u use precomputed set for cracking any newly leaked hashed passwords

92

Countermeasures

Password salting

u to slow down dictionary attacks

u a user-specific salt is appended to a user’s password before it is being hashed

u each salt value is stored in the clear along with its corresponding hashed password

u if two users have the same password, they will have different hashed passwords

u example: Unix uses a 12 bit salt

Hash strengthening

u to slow down dictionary attacks

u a password is hashed k times before being stored

93

U, h(PU||SU), SU Now preprocessing is useless;
or it must be user specific!

7.3.2 Something you are
– biometric
authentication

94

Something you are

u biometric schemes use people’s unique physical characteristics

u traits, features

u face, finger prints, iris patterns, hand geometry

u biometrics may seem to be the most secure solution for user authentication

u biometric schemes are still quite new

Biometrics: Something you are

96

Problems with biometrics

u Intrusive

u Expensive

u Single point of failure

u Sampling error

u False readings

u Speed

u Forgery

97

Fingerprint
u Enrolment

u reference sample of the user’s fingerprint is acquired at a fingerprint reader

u Features are derived from the sample

u fingerprint minutiae

u end points of ridges, bifurcation points, core, delta, loops, whorls, …

u For higher accuracy, record features for more than one finger

u Feature vectors are stored in a secure database

u When the user logs on, a new reading of the fingerprint is taken

u features are compared against the reference features

Identification Vs. verification

u Biometrics are used for two purposes

u Identification: 1:n comparison, i.e., identify user from a database of n persons

u Verification: 1:1 comparison, i.e., check whether there is a match for a given user

u Authentication by password

u clear reject or accept at each authentication attempt

u Biometrics

u stored reference features will hardly ever match precisely
features derived from the current measurements

99

Failure rates

u Measure similarity between reference features and current features

u User is accepted if match is above a predefined threshold

u New issue: false positives and false negatives

u Accept wrong user (false positive)

u security problem

u Reject legitimate user (false negative)

u creates embarrassment and an inefficient work environment

100

Forgeries

Fingerprints, and biometric traits in general, may be unique but they are no secrets!

u you are leaving your fingerprints in many places

u rubber fingers have defeated commercial fingerprint-recognition

u minor issue if authentication takes place in the presence of security personnel

u when authenticating remote users additional precautions have to be taken

u user acceptance: so far fingerprints have been used for tracing criminals

101

7.3.3 Something you
have – authentication
tokens

102

Something you have
u user presents a physical token to be authenticated

u keys, cards or identity tags (access to buildings), smart cards

u limitations

u physical tokens can be lost or stolen

u anybody in possession of token has the same rights as legitimate owner

u physical tokens are often used in combination with something you know

u e.g. bank cards come with a PIN or with a photo of the user

u this is called: 2nd-factor authentication or multi-factor authentication

Tokens: something you have

104

Time-Based Token Authentication

PASSCODE PIN TOKENCODE=

Login: mcollings
2468159759Passcode:

+

Clock
synchronized to
UCT

Unique seed

Token code:
Changes every

60 seconds

Problems with tokens

u Inconvenience
u Lost token
u Stolen token
u Cloned token
u Side-channel attacks (for key exfiltration)

105

7.3.4 Other methods

106

Federated identity management

107

User
Identity Manager

(performs
authentication)

Authenticated
Identity

Application
(no authentication)

Application
(no authentication)

Application
(no authentication)

SSO: Single Sign-On

108

User Single Sign-On
Shell

Identification and
Authentication

Credentials

Application

Authentication

Token

AuthenticationAuthentication

ApplicationApplication

Password

More details on SSO

u Having to remember many passwords for different services is a nuisance

u with a single sign-on service, you have to enter your password only once

u an alternative solution: password managers

u A simplistic single-sign on service could store your password and
do the job for you whenever you have to authenticate yourself

u such a service adds to your convenience but it also raises new security concerns

u System designers have to balance convenience and security

u ease-of-use is an important factor in making IT systems really useful

u but many practices which are convenient also introduce new vulnerabilities

109

More on authentication

If dissatisfied with security level provided by passwords?

u you can be authenticated on the basis of

u something you know

u something you have

u something you are

u what you do – behavioural

u where you are – location based

110

What you do

u people perform mechanical tasks in a way that is both repeatable and
specific to the individual

u experts look at the dynamics of handwriting to detect forgeries

u users could sign on a special pad that measures attributes like writing
speed and writing pressure

u on a keyboard, typing speed and key strokes intervals can be used to
authenticate individual users

u more recently behaviours from one’s mobile phone have been studied

111

Where you are

u some OSs grant access only if you log on from a certain terminal

u a system administration may only log on from an operator console
but not from an arbitrary user terminal

u users may be only allowed to log on from a workstation in their office

u common method in mobile and distributed computing

u Global Positioning System (GPS) might be used to established the precise
geographical location of a user during authentication

7.4 More on password
cracking

113

Password cracking methods

u Brute force

u Try all passwords (in a search space) for inverting a specific password hash

u Eventually succeeds given enough time & CPU power

u Dictionary

u Precompute & store by hash (hash, password) pairs of a set of likely passwords

u Fast look up for password given the hash

u Large storage & preprocessing time

u Rainbow table

u Partial dictionary of hashes

u More storage, shorter cracking time

114

Brute force cracking: Method

u Try all passwords (for a given password space)

u Parallelizable

u Eventually succeeds given enough time & computing power

u Best done with GPUs and specialized hardware (e.g., FPGAs or Asic)

u Large computational effort for each password cracked

115

Brute force cracking: Search space

Assume a standard keyboard with 94 characters

116

Password length Number of passwords

5 945 = 7,339,040,224

6 946 = 689,869,781,056

7 947 = 64,847,759,419,264

8 948 = 6,095,689,385,410,816

9 949 = 572,994,802,228,616,704

Brute force cracking: Computational effort

Say, the attacker has 60 days to crack a password by exhaustive search
assuming a standard keyboard of 94 characters.

How many hash computations per second are needed?

u 5 characters: 1,415

u 6 characters: 133,076

u 7 characters: 12,509,214

u 8 characters: 1,175,866,008

u 9 characters: 110,531,404,750

117

Dictionary attack: Method

u Precompute hashes of a set of likely passwords

u Parallelizable

u Store (hash, password) pairs sorted by hash

u Fast look up for password given the hash

u Requires large storage and preprocessing time

118

Dictionary attack: Example

STEP 1: Make a plaintext password file of bad passwords (called `wordlist`):

triandop12345

letmein

zaq1zaq1

STEP 2: Generate MD5 hashes:

for i in $(cat wordlist); do

 echo -n "$i" | md5 | tr -d " *-"; done > hashes

STEP 3: Get a dictionary file.

E.g., using rockyou.txt which lists most common passwords from the RockYou hack in 2009.

119

https://wiki.skullsecurity.org/Passwords
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/

Dictionary attack: Intelligent Guessing

Try the top N most common passwords

u e.g., check out several lists of passwords on known repositories

Try passwords generated by

u a dictionary of words, names, places, notable dates along with

u combinations of words & replacement/interspersion of digits, symbols, etc.

u a syntax model

u e.g., 2 words with some letters replaced by numbers: elitenoob, e1iten00b, …

u a Markov chain model or a trained neural network

120

Password Cracking Tradeoffs

1980 - Martin Hellman

u Achieves (possibly useful) time Vs. memory tradeoffs

u Idea: Reduce time needed to crack a password by using a large amount of memory

u Benefits

u Better efficiency than brute-forcing methods

u Flaws

u This kind of database takes tens of memory’s terabytes

121

Password Cracking Tradeoffs (cont.)

122
Storage

Time Brute force

Dictionary

Rainbow
table

Password Cracking Tradeoffs (cont.)

Brute-force: no preprocessing, no storage, very slow cracking

Dictionary: very slow preprocessing, huge storage, very fast cracking

Rainbow tables: tunable tradeoff between storage space & cracking time

u Trade more storage for faster cracking

123

Method Storage Preprocessing Cracking

Brute-force ~ 0 ~ 0 n
Dictionary n n ~ 0

Rainbow table, mt2 = n mt mt2 t2/2

All costs
relate

to hashing

Password
space of

size n

Rainbow tables

u Use data-structuring techniques to get desirable time Vs. memory tradeoffs

u Main challenge

u Cryptographic hashing is random and exhibits no patterns

u E.g., no ordering can be exploited to allow for an efficient search data structure

u Main idea

u Establish a type of “ordering” by randomly mapping hash values to passwords

u E.g., via a “reduction” function that produces password “chains”

124

Reduction function

Maps a hash value to a pseudorandom password from a given password space

u E.g., reduction function p = R(x) for 256-bit hashes & 8-character passwords from a
64-symbol alphabet a1, a2, …, a64

u Split hash x into 48-bit blocks x1, x2, …, x5 and one 16-bit block x6

u Compute y = x1Å x2 … Å x5

u Split y into 6-bit blocks y1, y2, …, y8

u Let p = ay1, ay2, …, ay8

u This method can be generalized to arbitrary password spaces

125

Password chain

u Sequence (of size t) alternating passwords & hashes

u Start with a random password p1

u Alternate using cryptographic hash function H & reduction function R

u xi = H(pi), pi+1 = R(xi)

u End with a hash value xt

126

mycat6 H twotrainsb56f19c8d4 … 43be7901cd
R H H

p1 p2x1 xt

Hellman’s method

u Starting from m random passwords,
build a table of m password chains,
each of length t

u The expected number of distinct
passwords in a table is W(mt)

u Compressed storage:

u For each chain, keep only the first
password, p, and the last hash value, z

u Store pairs (z, p) in a dictionary D
indexed by hash value z

127

m
…

…………………………

…

t

Classic password recovery

Recovery of password with hash value x

u Step 1: traverse the suffix of the chain starting at x

u y = x;

u while p = D.get(y) is null

u y = H(R(y)) //advance

u if i++ > t return “failure” //x not in the table

u Step 2: traverse the prefix of the chain ending at x

u while y = H(p) ¹ x

u p = R(y) //advance

u if j++ > t return “failure” //x not in the table

u return p //password recovered
128

…… x zp
Phase 1

Phase 2

High-probability recovery

Collisions in the reduction function result in recovery issues

u Mitigate the impact of collisions, using t tables
with distinct reduction functions R

u If m×t2 = O(n), n passwords are covered with high probability

Performance

u Storage: mt cryptographic hash values

u Recovery: t2 hash computations & t2 dictionary lookups

u E.g., n = 1,000,000,000, m = t = n1/3, mt = t2 = n2/3 = 1,000,000

129

m

t

Rainbow table

Instead of t different tables, use a single table with

u O(m×t) chains of length t

u Distinct reduction function at each step

u Visualizing the reduction functions with
a gradient of colors yields a rainbow

Performance

u Storage : mt hash values (as before)

u Recovery : t2/2 hash computations &
t dictionary lookups (lower than before)

130

R1 R2 … Rt-1 Rt

m×t

t

Rainbow-table password recovery

for i = t, (t – 1), … , 1

y = x //x is password hash we want to crack

for j = i, …, t - 1 //traverse from i to t

y = H(Rj(y)) //advance

if p = D.get(y) is not null //candidate position i

for j = 1 … i - 1 //traverse from 1 to i

p = Rj(H(p)) //advance

if H(p) = x return p //password recovered

else return “failure” //x not in the table

return “failure” //x not in the table

131

Worst-case # of hashing

1 + 2 + … + (t -1) + 1 ≈ t2/2

1
2
…

1
t - 1

…x
Rt-1Ri

Inner loop: from i to t

…p

R1 Ri-1

Final loop: from 1 to i

