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6B.1 Public-key
encryption & digital
signhatures



Recall: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For symmetric-key message encryption/authentication

¢ adversary

¢ types of attacks %

o trusted set-up Alice m—»

¢ secret key is distributed securely |

+ secret key remains secret
# ftrust basis @

Alice m—»

.
v
encrypt—> ¢ —— c—>
< o
y
“Sign” —> M, t ————— 1, '—

¢ underlying primitives are secure
¢ PRG, PRF, hashing, ...
¢ e.g., block ciphers, AES, etc.




On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

> strong assumption to accept

¢ “securely obtain”

¢ need of a secure channel

¢ “shared secret key” » challenging problem to manage

¢ too many keys

i % ~> Public-key cryptography to the rescue...




On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

» (A) strong assumption to accept

¢ “securely obtain”

¢ requires secure channel for key distribution (chicken & egg situation)

¢ seems impossible for two parties having no prior trust relationship

¢ not easily justifiable to hold a priori

> (B) challenging problem to manage

¢ “shared secret key”

¢ requires too many keys, namely O(n?2) keys for n parties to communicate

¢ imposes too much risk to protect all such secret keys

+ entails additional complexities in dynamic settings (e.g., user revocation)
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Alternative approaches?

Need to securely distribute, protect & manage many session-based secret keys

¢ (A) for secure distribution, just “make another assumption...”

¢ employ “designated” secure channels

¢ physically protected channel (e.g., meet in a “sound-proof” room)

¢ employ “trusted” party

¢ entities authorized to distribute keys (e.g., key distribution centers (KDCs))

¢ (B) for secure management, just ‘live with it!”

» Public-key cryptography to the rescue...




disclaimer on names
private = secret

Public-key (or asymmetric) cryptography

Goal: devise a cryptosystem where key setup is “more” manageable

Main idea: user-specific keys (that come in pairs)
¢ user U generates two keys (U, Ug)

o U, is public — it can safely be known by everyone (even by the adversary)
¢ U, is private — it must remain secret (even from other users)
Usage
¢ employ public key U for certain “public” tasks (performed by other users)

¢ employ private key U, for certain “sensitive/critical” tasks (performed by user U)

Assumption

¢ public-key infrastructure (PKI): public keys become securely available to users
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From symmetric to asymmetric encryption

secret-key encryption
H
main limitation k w k
. in limitati @ . \ . @

& session-specific keys Alice m—>encrypt— ¢ - > c—decrypt

public-key encryption

Bobpy "@, : Bobyg,
v . ; -

¢ user-specific keys “sensitive” task

¢ messages encrypted by receiver’s PK can (only) be decrypted by receiver’s SK
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From symmetric to asymmetric message authentication

secret-key message authentication (or MAC)

¢ main limitation g z |I

¢ session-specific keys Alice m—» “sign”

public-key message authentication

(or digital signatures) Alicegy \5@ Alicepy __. ~
' 5 — L

¢ main flexibility Alice m—»| sign —> M, O—msime—m3>m, o —> verify —>  Bob

¢ user-specific keys “critical” task acc

¢ (only) messages signed by sender’s SK can be verified by sender’s PK
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Thus: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For asymmetric-key message encryption/authentication

¢ adversary

o types of attacks % BOFPK "@,

¢ trusted set-up Alice m—-encrypt—> ¢ — > c—>
¢ PKlis needed |

¢ secret keys remain secret Aliceg, \3@'
¢ trust basis ¢

Alice m—» “sign” — m,t —‘% m, t—»

¢ underlying primitives are secure

¢ typically, algebraic computationally-hard problems

¢ e.g., discrete log, factoring, etc. _




General comparison

Symmetric crypto

¢ key management
¢ less scalable & riskier
¢ assumptions
# secret & authentic communication
& secure storage
¢ primitives
¢ generic assumptions
¢ more efficiently in practice

Asymmetric crypto

¢ key management
¢ more scalable & simpler
¢ assumptions
+ authenticity (PKI)
# secure storage
¢ primitives
¢ math assumptions
# less efficiently in practice (2-3 0.0.m.)
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Public-key infrastructure (PKiI)

A mechanism for securely managing, in a dynamic multi-user setting,
user-specific public-key pairs (to be used by some public-key cryptosystem)

¢ dynamic, multi-user

¢ the system is open to anyone; users can join & leave
¢ user-specific public-key pairs

¢ each user U in the system is assigned a unique key pair (Uy, Ug)
¢ secure management (e.g., authenticated public keys)

+ public keys are authenticated: current U, of user U is publicly known to everyone

Very challenging to realize
¢ currently using digital certificates; ongoing research towards a better approach...
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Overall: Public-key encryption & signatures

Assume a trusted set-up

¢ public keys are securely available (PKI) & secret keys remain secret
Bsk

B«
' '

Alice m—|encrypt— ¢ - > c—decrypt— m Bob

Q&

Alice m—
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Secret-key vs. public-key encryption

Secret Key (Symmetric) Public Key (Asymmetric)
Number of 1 2
keys
Key size 56-112 (DES), 128-256 (AES) Unlimited; typically no less than 256;
(bits) 1000 to 2000 currently considered
desirable for most uses
Protection of | Must be kept secret One key must be kept secret; the
key other can be freely exposed
Best uses Cryptographic workhorse. Secrecy and Key exchange, authentication,
integrity of data, from single characters signing
to blocks of data, messages and files
Key Must be out-of-band Public key can be used to distribute
distribution other keys
Speed Fast Slow, typically by a factor of up to
10,000 times slower than symmetric
algorithms
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Public-key cryptography: Early history

Proposed by Diffie & Hellman
¢ documented in “New Directions in Cryptography” (1976)
¢ solution concepts of public-key encryption schemes & digital signatures

¢ key-distribution systems
¢ Diffie-Hellman key-agreement protocol
¢ “reduces” symmetric crypto to asymmetric crypto
Public-key encryption was earlier (and independently) proposed by James Ellis

+ classified paper (1970)

¢ published by the British Governmental Communications Headquarters (1997)

¢ concept of digital signature is still originally due to Diffie & Hellman
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6B.2 Public-key
certificates



How to set up a PKI?

¢ How are public keys stored? How to obtain a user’s public key?
¢ How does Bob know or ‘trust’ that A, is Alice’s public key?

¢ How A, (a bit-string) is securely bound to an entity (user/identity)?

public key: Ap¢
secret key: A

public key: By
secret key: Bey
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Achieving a PKI...

How can we maintain the invariant that at all times

¢ any given user U is assigned a unique public-private key pair; and

¢ any other user known U’s current public key?

Recall

*

entails binding
¢ secret keys can be lost, stolen or they should be revoked users/identities
to public keys
PK cryptosystems come with a Gen algorithm which is run by U

¢ on input a security-strength parameter, it outputs a random valid key pair for U

public keys can be made publicly available

¢ e.g, sent by email, published on web page, added into a public directory, etc.
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Distribution of public keys

Public announcement
¢ users distribute public keys to recipients or broadcast to community at large
Publicly available directory

¢ can obtain greater security by registering keys with a public directory

Both approaches have problems and are vulnerable to forgeries
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Do you trust your public key?

¢ Impostor claims to be a true party
¢ true party has a public and private key

¢ impostor also has a public and private key

¢ Impostor sends impostor’s own public key to the verifier
¢ says, “This is the true party’s public key”

¢ this is the critical step in the deception
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Certificates: Trustable identities & public keys

Certificate
¢ apublic key & an identity bound together

¢ in a document signed by a certificate authority

Certificate authority (CA)

¢ an authority that users trust to securely bind identity to public keys
¢ CA verifies identities before generating certificates for these identities

¢ secure binding via digital signatures
¢ ASSUMPTION: The authority’s PK CAp is authentic
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Public-key certificates in practice

Current (imperfect) practice for achieving trustable identities & public keys
¢ everybody trusts a Certificate Authority (CA)
¢ everybody knows CAp¢ & trusts that CA knows/protects corresponding secret key CAg
# a certificate binds identities to public keys in a CA-signed statement
¢ e.g., Alice obtains a signature on the statement “Alice’s public key is 1032xD”
o users query CA for public keys of intended recipients or signers
¢ e.g.,, when Bob wants to send an encrypted message to Alice
¢ he first obtains & verifies a certificate of Alice’s public key
¢ e.g., when Alice wants to verify the latest software update by Company

# she first obtains & verifies a certificate of Company’s public key
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Example

Mario Rossi's
Certificate

Document containing the
public key and identity for
Mario Rossi
C Certlflcate IS a pUbIIC Certificate Authority's
e : Nz : Mari ivate k
key and an Identlty Sdme .tlrl() - private Key
urname: Rossi

bound together and Address: --- St.
Signed by a Certificate ...........................

authority (CA) &-

Name: Mario
Surname: Rossi
Address: --- St.

-3 2 Szl RS FNARTAETFE NN & 2 A

G

Mario Rossi's

Mario Rossi's public key
public key
Signature of the Certificate
Authority

T ————

a certificate authority is an authority
that users trust to accurately verify
identities before generating certificates

that bind those identities to keys ‘/SymanteCm
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Certificate hierarchy

Single CA certifying every public key is impractical
Instead, use trusted root certificate authorities

¢ root CA signs certificates for intermediate CAs,
they sign certificates for lower-level CAs, etc.

¢ certificate “chain of trust”

* Sigr‘SK_Symantec(”BrOWﬁ”; l:)KBrown)
* SignSK_Stevens(”facuH:y”; I:)Kfaculty)

* SignSK_facuIty(”N i kOS”, PKNikos)
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To create Diana’s certificate:
Diana creates and delivers to Edward:

Name: Diana
Position: Division Manager
Public key: 17EFS83CA ...

Edward adds:

Name: Diana
Position: Division Manager
Public key: 17EFS83CA ...

hash value
128C4

Edward signs with his private key:

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

Which is Diana’s certificate.

Example 1: Certificate signing & hierarchy

To create Delwyn’s certificate:

Delwyn creates and delivers to Diana:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

Diana adds:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

Diana signs with her private key:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

And appends her certificate:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

Which is Delwyn’s certificate.
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Example 2

Symantec

RISD staff
V\
O
O =
®» 0 ® @ ® @&

o

O O G

/

users

_, Brown

- F Faculty
/ Nikos

What bad things can happen if the root CA system is compromised?
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Secure communication over the Internet

https://

< C A |8 Bank of America Corporation Qe ——————————————————
i Apps M Absolute Radic - Int.. €1 MEGA TV [ New Tab
Personal Small Business Wealth Management Businesses & Institutions S
- ,,}
Bankof America — Locations | ContactUs | Help { En espafiol
Enter your Online ID
83 Protect Lez

— il s et

M save this Online D
» Help/options

App. Snap. Deposit.

Deposit checks right away using the camera on your
moblle deV|Ce—r|ght f:rom the MC App. Snap. Deposit. Deposit checks right away using the

camera on your mobile device-right from the Mobile

Banking App. Learn more
Learn more

What cryptographic keys are used to protect communication?
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X.509 certificates

Defines framework for authentication services

¢ defines that public keys stored as certificates in a public directory
¢ certificates are issued and signed by a CA

Used by numerous applications: SSL

Example: see certificates accepted by your browser
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6B.3 Hybrid encryption



Secret-key cryptography is “reduced” to public-key

PK encryption can be used “on-the-fly” to securely distribute session keys

Main idea: Leverage PK encryption to securely distribute session keys
¢ sender generates a fresh session-specific secret key k and learns receiver’s public key R
+ session key k is sent to receiver encrypted under key Ry

¢ session key k is employed to run symmetric-key crypto

¢ e.g., how notto run
above protocol

@ | Bill, give me your public key >
< Here is my key, Amy | @
@ | Here is a symmetric key we can us>
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Hybrid encryption

“Reduces” secret-key crypto to public-key crypto

¢ better performance than block-based public-key CPA-encryption
¢ mainidea

¢ apply PK encryption on random key k k

¢ use k for secret-key encryption of m
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Hybrid encryption using the KEM/DEM approach

“Reduces” secret-key crypto to public-key crypto

¢ mainidea o

¢ encapsulate secret key k into ¢ l

¢ use k for secret-key encryption of m pk—{>Encaps k > Enc’

¢ KEM: key-encapsulation mechanism - Encaps

¢ DEM: data encapsulation mechanism - Enc’ \ \

¢ o4
¢ KEM/DEM scheme

¢ CPA-secure if KEM is CPA-secure and Enc’ EAV-secure

¢ CCA-secure if KEM and Enc’ are CCA-secure
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6B.4 Number theory
background



Multiplicative inverses

The residues modulo a positive integer n comprise set Z,={0,1,2,...
¢ letxandy be two elements in Z,such thatxymodn=1
¢ we say:y is the multiplicative inverse of x in Z,

¢ we write:y=x!

¢ example:

¢ multiplicative inverses of the residues modulo 11

X

0

4

5

10

x1

3

9

10

34




Multiplicative inverses (cont’ed)

Theorem
An element x in Z, has a multiplicative inverse iff x, n are relatively prime

¢ e.g., the only elements of Z,, having a multiplicative inverse are 1, 3,7, 9

X 0 1 2 3 4 5 6 7 3

x~1 1 7 3

Corollary
If p is prime, every non-zero residue in Z, has a multiplicative inverse

Theorem

A variation of Euclid’s GCD algorithm computes the multiplicative inverse of an
element x in Z, or determines that it does not exist
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Computing multiplicative inverses

Fact
¢ given two numbers a and b, there exist integers x, y s.t.
xa+yb=gcd(a,b)

which can be computed efficiently by the extended Euclidean algorithm.

Thus

¢ the multiplicative inverse of a in Z,, exists iff gcd(a, b) = 1
¢ i.e, iff the extended Euclidean algorithm computes xandys.t.xa+yb=1

+ in this case, the multiplicative inverse of a in Z, is x
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Euclid’s GCD algorithm

Computes the greater common divisor
by repeatedly applying the formula
gcd(a, b) = gcd(b, a mod b)

¢ example

¢ gcd(412, 260) =4

Algorithm EuclidGCD(a, b)
Input integersaand b
Output gcd(a, b)

ifb=0
return a

else
return EuclidGCD(b, a mod b)

412

260

152

108

44

20

260

152

108

44

20
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Extended Euclidean algorithm

Theorem
If, given positive integers a and b,
d is the smallest positive integer Algorithm Extended-Euclid(a, b)
s.t. d =ia + jb, for some integers Input integersaand b
iand j, then d = gcd(a, b) Output gcd(a, b), i and j
s.t. ia+jb = gcd(a,b)
ifb=0
¥ tauce return (a,1,0)
¢ a=21,b=15 (d’, %', y') = Extended-Euclid(b, a mod b)
e d=3,i=3,j=-4 (d, x,y)=(d', ¥y, x' - [a/bly’)
s - A6 50 return (d, x, y)
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Multiplicative group

A set of elements where multiplication ¢ is defined

¢ closure, associativity, identity & inverses

& multiplicative groups Z*,,, defined w.r.t. Z, (residues modulo n)

¢ subsets of Z, containing all integers that are relative prime to n

¢ CASE 1:if nis a prime number, then all non-zero elements in Z, have an inverse
e 72,={1,23,4,5,6},n=7
¢ 2°4=1(mod7),3*5=1(mod7),6°*6=1(mod7),1*1=1(mod7)

¢ CASE 2:if nis not prime, then not all integers in Z, have an inverse
* 7'4=1{1,3,7,9},n=10
¢ 3°*7=1(mod10),9°9=1(mod 10),1*1=1 (mod 10)
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Order of a multiplicative group

Order of a group = cardinality of the group
¢ multiplicative groups for Z*,,
« the totient function ¢(n) denotes the order of Z*,, , i.e., d(n) = | Z", |
¢ ifn=pisprime, then the order of Z*p={1,2,...,p-1} is p-1, i.e., ¢(n) = p-1
¢ eg,25={1,23,456},n=7,$(7)=6
¢ ifnisnot prime, d(n) = n(1-1/p;)(1-1/p,)...(1-1/p,), Wwhere n = peL,p&%,...p%K,
¢ e.g,21=1{13,7,9},n=10, $(10) = 4

¢ ifn=pq, where p and q are distinct primes, then ¢(n) = (p-1)(g-1) Factoring problem
+ difficult problem: given n = pq, where p, g are primes, find p and q or ¢(n)
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Fermat’s Little Theorem

Theorem

If p is a prime, then for each nonzero residue x in Z,, we have x> mod p =1

¢ example (p=5):

1“mod5=1 2°mod5=16mod5=1
3*mod5=81mod5=1 4*mod5=256 mod5=1
Corollary

If p is a prime, then the multiplicative inverse of each xin Z*, is x"~2mod p

¢ proof: x(xP"2modp) modp=xxP"?2modp=x""modp=1
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Euler’s Theorem

Theorem

For each element xin Z*,, we have x*™ mod n=1

¢ example (n = 10)
o 7°,=1{1,3,7,9}, n=10, $(10) = 4
o 3%19mod10=3*mod 10=81 mod 10=1
¢ 7419 mod 10 =7 mod 10 = 2401 mod 10 =1
e 9919 mod 10 =9* mod 10 = 6561 mod 10 =1
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Computing in the exponent

For the multiplicative group Z*,,, we can reduce the exponent modulo ¢(n)

e xYmod n =xkeM+rmod n = (x®M)kxr mod n = x" mod n = x YM2d (N mod n

Corollary: For Z*,,, we can reduce the exponent modulo p-1

¢ example
o 7%, ={1,3,7,9} n=10, $(10) = 4
¢ 39 mod 10 = 315%0mod4 mod 10 =32 mod 10 =9
¢ example
e 72*,={12,.,p-1},p=19, ¢(19) =18
e 153 mod 19 =153°md18 mod 19 = 153 mod 19 = 12
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Powers

Let p be a prime

¢ the sequences of successive powers of the elements in Z°, exhibit repeating
subsequences

¢ the sizes of the repeating subsequences and the number of their
repetitions are the divisors of p—1

¢ example,p=7 x x2 X3

x4
|
2
4
4
2
1
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6B.5 The Discrete Log
problem & its
applications



The discrete logarithm problem

Setting
+ if pbe an odd prime, then G = (Z,7, -) is a cyclic group of order p—1
e 7, =11, 2,3, .., p-1}, generated by some g in Z,*
e fori=0,1, 2, ..., p-2, the process g'mod p produces all elements in Z,°
+ for any x in the group , we have that gt mod p = x, for some integer k
¢ kis called the discrete logarithm (or log) of x (mod p)
Example
e (Z477, ) is acyclic group G with order 16, 3 is the generator of G and 316=1 mod 17
¢ letk=4,3%=13 mod 17 (which is easy to compute)

¢ theinverse problem: if 3k= 13 mod 17, what is k? what about large p?

46




Computational assumption

Discrete-log setting

¢ cyclicG =(Z,’, -) of order p — 1 generated by g, prime p of length t (|p|=t)
Problem

+ given G, g, pandxin Z,’, compute the discrete log k of x (mod p)

¢ we know that x = gk mod p for some unique k in {0, 1, ..., p-2}... but

Discrete log assumption

& for groups of specific structure, solving the discrete log problem is infeasible
« any efficient algorithm finds discrete logs negligibly often (prob = 2-¥2)

Brute force attack

o cleverly enumerate and check O(2%2) solutions
47




ElGamal encryption

Assumes discrete-log setting (cyclic G = (2", -) = <g>, prime p, message space Z,)
Gen

¢ secret key: random number x € Z°, public key: A = g*mod p, alongw/ G, g, p
Enc
¢ pickafreshrandomr € Z",and setR= A" (=g*")

¢ send ciphertext Encpk(m) = (c4, C5) wherec; =g, ¢;=m:Rmodp
Dec
¢ Decglcy,Cp) = ¢ (1/c1X) mod p where ¢;*= g

Security is based on Computational Diffie-Hellman (CDH) assumption
e given (g, g3,g°) it is hard to compute gab

A signature scheme can be also derived based on above discussion
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Application: Key-agreement (KA) scheme

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
¢ instead of meeting in person in a secret place, they want to use the insecure line...

¢ KA scheme: they run a key-agreement protocol I1 to contribute to a shared key K
¢ correctness: Ky = Kg

& security: no PPT adversary A, given T, can distinguish K from a trully random one

Alice Bob

- @7
input 1"

output Ku 4 =
transcript T of exchanged messages
49
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Key agreement: Game-based security definition

scheme M(1") runs to generate K = K, = Kz and transcript T; random bit b is chosen
adversary Ais given T and k,; if b = 1, then k, = K, else k, is random (both n-bit long)
A outputs bit b’ and wins if b’ = b

then: M is secure if no PPT A wins non-negligibly often

(A) Alice (D) output b’ (E) Awinsiffb’ =b

A
input 1" “@' (C)T, ke input 1"

[
>

output Ku 4 =
transcript T of exchanged messages

(B) b is randomly chosen 50




The Diffie-Hellman key-agreement protocol

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
¢ DH KA scheme

+ discrete log setting: p, g public, where <g>= 7", and p prime

Alice

input 1" -

(1) randomly pick secret a (3) send g2 mod p : (2) randomly pick secret b

<
<

(4) send g° mod p
(5) set K = g2 mod p = (gP mod p)2 mod p (6) set K = g2 mod p = (g2 mod p)? mod p
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Security

o discrete log assumption is necessary but not sufficient

+ decisional DH assumption

¢ given g, g2 and gb, g?® is computationally indistinguishable from uniform
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Authenticated Diffie-Hellman

s b MITM attacker = oib

- gc mod p “@g g° mod p
) /

Alice computes g2 mod p and Bob computes g°° mod p !!!

Calices 82 mod p, Signajice(g2 mod p) o

Caob, 8° Mod p, Signgep(g° mod p)

A

53
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6B.6 The RSA algorithm



The RSA algorithm (for encryption)

General case Example
Setup (run by a given user) Setup
¢ n=p-q,with pand g primes ¢ p=7,q=17,n=7-17=119
¢ erelatively primetod(n)=(p-1)(q-1) ¢ e=5¢d(n)=6-16=96
¢ dinverse of ein Zy, e d=77
Keys Keys
¢ public key is Kpk = (n, e) ¢ publickeyis (119, 5)
¢ private keyis K =d ¢ private key is 77
Encryption Encryption
¢ C=Me®mod n for plaintext M in Z, ¢ C=199mod119=66forM=19in Z;;9
Decryption Decryption

¢ M=Cimodn ¢ M=66'""mod119=19
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Another complete example

¢ Setup ¢ Encryption
ep=5q9q=11,n=5-11=55 ¢ C=M:3mod 55 for M in Zs
ed(n)=4-10=40 ¢ Decryption

ee=3,d=27 (3:27=81=240+1) ¢ M=C? mod 55

7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
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*Correctness of RSA

Given Analysis
Setup Need to show
¢ n=p-q, with pand g primes e Me¢=Mmodp-q
¢ e relatively primeto d(n)=(p-1)(q-1) Use (1) and apply (2) for prime p
¢ dinverse of ein Zy, (1) e Med=Med-1M = (MP-1)hia-l) M
Encryption ¢ Med=1ha1) M mod p=Mmod p
¢ C=Me®emod n for plaintext M in Z, Similarly (w.r.t. prime q)
Decryption ¢ Med=Mmodq
¢ M=C'modn Thus, since p, g are co-primes
Fermat’s Little Theorem (2) e Me9=Mmodp-q

¢ for prime p, non-zerox: x> modp =1
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A useful symmetry

[1] RSA setting
¢ modulon=p-q, p &qgare primes, public & private keys (e,d): d - e =1 mod (p-1)(g-1)

[2] RSA operations involve exponentiations, thus they are interchangeable

e C = M® modn (encryption of plaintext M in Z,,)
e M = €4 modn (decryption of ciphertext Cin Z,)
Indeed, their order of execution does not matter: (Me)d = (M9) e mod n

[3] RSA operations involve exponents that “cancel out”, thus they are complementary

o xPUal)modn=1 (Euler’s Theorem)

Indeed, they invert each other: (Me¢)d =(Md)e =Med = MklP-1)a-1)+l mod n
=(Mp-lal)k. M =1k.M =Mmodn
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Sighing with RSA

RSA functions are complementary & interchangeable w.r.t. order of execution

¢ core property: M®d = M mod p - ¢ for any message M in Z,

RSA cryptosystem lends itself to a signature scheme

¢ ‘reverse’ use of keys is possible : (M9)e =M mod p - q
¢ signing algorithm Sign(M,d,n): 6 = M9 mod n for message M in Z,

+ verifying algorithm Vrfy(o,M,e,n): return M == ¢® mod n
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The RSA algorithm (for signing)

General case Example
Setup (run by a given user) Setup
¢ n=p-q,with pand g primes ¢ p=7,q=17,n=7-17=119
¢ erelatively primetod(n)=(p-1)(q-1) ¢ e=5¢d(n)=6-16=96
¢ dinverse of ein Zy, e d=77
Keys (same as in encryption) Keys
¢ public key is Kpk = (n, e) ¢ publickeyis (119, 5)
¢ private keyis K =d ¢ private key is 77
Sign Signing
¢ o =M9mod n for message M in Z, ¢ 0=66""mod119=19for M =66 inZ;;
Verify Verification

¢ CheckifM=0°modn ¢ CheckifM=19>mod 119 =66
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Digital sighatures & hashing

Very often digital signatures are used with hash functions
¢ the hash of a message is signed, instead of the message itself

Signing message M

+ let h be a cryptographic hash function, assume RSA setting (n, d, e)
¢ compute signature o on message M as: 6 = h(M)4 mod n
¢ sendo, M

Verifying signature o
¢ use public key (e, n) to compute (candidate) hash value H = 6® mod n
¢ if H=h(M) output ACCEPT, else output REJECT
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Security of RSA

Based on difficulty of factoring large numbers (into large primes),i.e., n=p-qintop, g
¢ note that for RSA to be secure, both p and g must be large primes
¢ widely believed to hold true
¢ since 1978, subject of extensive cryptanalysis without any serious flaws found
¢ best known algorithm takes exponential time in security parameter (key length |n|)
¢ how can you break RSA if you can factor?

Current practice is using 2,048-bit long RSA keys (617 decimal digits)

¢ estimated computing/memory resources needed I THH NS PCs Memory
to factor an RSA number within one year
430 1 128MB
760 215,000 4GB
1,020 342x106 170GB
= 1,620 1.6x10%° 120TB




RSA challenges

Challenges for breaking the RSA cryptosystem of various key lengths (i.e., |n])
¢ known in the form RSA-key bit length’ expressed in bits or decimal digits
& provide empirical evidence/confidence on strength of specific RSA instantiations
Known attacks
¢ RSA-155 (512-bit) factored in 4 mo. using 35.7 CPU-years or 8000 Mips-years (1999) and 292 machines

¢ 160 175-400MHz SGI/Sun, 8 250MHz SGI/Origin, 120 300-450MHz Pent. ll, 4 500MHz Digital/Compagq
¢ RSA-640 factored in 5 mo. using 30 2.2GHz CPU-years (2005)

¢ RSA-220 (729-bit) factored in 5 mo. using 30 2.2GHz CPU-years (2005)
¢ RSA-232 (768-bit) factored in 2 years using parallel computers 2K CPU-years (1-core 2.2GHz AMD Opteron) (2009)

Most interesting challenges
+ prizes for factoring RSA-1024, RSA-2048 is S100K, S200K — estimated at 800K, 20B Mips-centuries
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Deriving an RSA key pair

public key is pair of integers (e,n), secret key is (d, n) or d
+ the value of n should be quite large, a product of two large primes, p and g
¢ often p, q are nearly 100 digits each, so n ~= 200 decimal digits (~512 bits)
¢ but 2048-bit keys are becoming a standard requirement nowadays
+ the larger the value of n the harder to factor to infer p and g
¢ but also the slower to process messages
+ a relatively large integer e is chosen
¢ e.g., by choosing e as a prime that is larger than both (p - 1) and (g - 1)
¢ why?
¢ dischosens.t.e-d=1mod (p-1)(q-1)

¢ how?
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Discussion on RSA

¢ Assumep=5,qg=11,n=5-11=55,¢d(n)=40,e=3,d =27
¢ why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
o recall that the ciphertext is C = M3 mod 55 for M in Zgs

7 8 9 10 11 12 13 14 15 16 17 18

M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
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Discussion on RSA

¢ Assumep=5,qg=11,n=5-11=55,¢d(n)=40,e=3,d =27
¢ why encrypting small messages, e.g.,, M = 2, 3, 4 is tricky?
o recall that the ciphertext is C = M3 mod 55 for M in Zgs
¢ Assume n =20434394384355534343545428943483434356091 =p - q
¢ can e be the number 43432534534345367
¢ Are there problems with applying RSA in practice?
¢ what other algorithms are required to be available to the user?
¢ Are there problem with respect to RSA security?
¢ does it satisfy CPA (advanced) security?
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Algorithmic issues

The implementation of the RSA cryptosystem requires various algorithms

¢ Main issues

¢ representation of integers of arbitrarily large size; and

¢ arithmetic operations on them, namely computing modular powers

¢ Required algorithms (at setup)

*

*

*

generation of random numbers of a given number of bits (to compute candidates p, q)
primality testing (to check that candidates p, q are prime)
computation of the GCD (to verify that e and ¢(n) are relatively prime)

computation of the multiplicative inverse (to compute d from e)
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Modular powers

Repeated squaring algorithm

¢ speeds up computation of aP mod n

*

*

write the exponent p in binary
® P=Pb-1Pb-2 - P1Po
start with Q; = aPb-1 mod n

repeatedly compute
Q; = ((Q;.1)> mod n)aPb-i mod n

obtain Q, =aP mod n

In total O (log p) arithmetic operations

Example

*

*

*

318 mod 19 (18 = 10010)

Q;=3'mod19=3

Q, =(32mod 19)3° mod 19=9

Q;=(92mod 19)3°mod 19=81 mod 19 =5

Q, = (52 mod 19)3! mod 19 =
(25 mod 19)3 mod 19 =18 mod 19 = 18

Qs = (182 mod 19)3° mod 19 = (324 mod 19)
mod 19=17-19+1mod 19=1




Pseudo-primality testing

Testing whether a number is prime (primality testing) is a difficult problem

An integer n > 2 is said to be a base-x pseudo-prime if
¢ x""1modn=1 (Fermat’s little theorem)
¢ Composite base-x pseudo-primes are rare

¢ arandom 100-bit integer is a composite base-2 pseudo-prime
with probability less than 1013
¢ the smallest composite base-2 pseudo-prime is 341
¢ Base-x pseudo-primality testing for an integer n
¢ check whetherx"-1modn=1
¢ can be performed efficiently with the repeated squaring algorithm
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Security properties

¢ Plain RSA is deterministic
¢ why is this a problem?

+ Plain RSA is also homomorphic
¢ what does this mean?
¢ multiply ciphertexts to get ciphertext of multiplication!
¢ [(m;)®mod N][(m;)¢ mod N] = (m;m,)¢ mod N
¢ however, not additively homomorphic
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Real-world usage of RSA

¢ Randomized RSA

¢ to encrypt message M under an RSA public key (e,n), generate a new
random session AES key K, compute the ciphertext as [K® mod n, AES,(M)]

¢ prevents an adversary distinguishing two encryptions of the same M since
K is chosen at random every time encryption takes place

¢ Optimal Asymmetric Encryption Padding (OAEP)

o roughly, to encrypt M, choose random r, encode M as
M’ =[X=M @ Hy(r), Y=r @ H,(X) ] where H, and H, are cryptographic
hash functions, then encrypt it as (M’) e mod n
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