
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 6: Cryptography V
Co-Instructor: Nikos Triandopoulos

February 11, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Homework 1, Project 1 have new submission dates

u Future assignment dates may be updated as well/accordingly

u Ed Discussion, Top Hat (code: 821033), Gradescope (set up for Project 1)

2

We are fixing some issues with Autograder

Today

u Cryptography

u Hash functions

u Definition
u Constructions
u Generic attacks
u Applications to cryptography
u Applications to security

3

6.1 Cryptographic
Hash functions

4

Cryptographic hash functions

Basic cryptographic primitive

u maps objects to a fixed-length binary strings

u core security property: mapping avoids collisions

u collision: distinct objects (x ≠ y) are mapped to the same hash value (H(x) = H(y))

u although collisions necessarily exist, they are infeasible to find

Important role in modern cryptography

u lie between symmetric- and asymmetric-key cryptography

u capture different security properties of “idealized random functions”

u qualitative stronger assumption than PRF

output
short digest,
fingerprint,

“secure”
description

input
arbitrarily
long string

H

77

Hash & compression functions

Map messages to short digests

u a general hash function H() maps

u a message of an arbitrary length to a n-bit string

u a compression (hash) function h() maps

u a long binary string to a shorter binary string

u an l(n)-bit string to a n-bit string, with l(n) > n

6

output
n-bit
string

input
l(n)-bit
string

h

output
n-bit
string

input
arbitrarily
long string

H

Collision resistance (CR)

7

x, x’

Attacker wins the game if x ≠ x’ & H(x) = H(x’)

ATHash
function H description of H

H is collision-resistant if any PPT A wins the game only negligibly often.

Weaker security notions

Given a hash function H: X ® Y, then we say that H is

u preimage resistant (or one-way)

u if given y Î Y, finding a value x Î X s.t. H(x) = y happens negligibly often

u 2-nd preimage resistant (or weak collision resistant)

u if given a uniform x Î X, finding a value x’ Î X, s.t. x’¹ x and H(x’) = H(x)
happens negligibly often

u collision resistant (or strong collision resistant)

u if finding two distinct values x’, x Î X, s.t. H(x’) = H(x) happens negligibly often

8

6.2 Design framework

9

Domain extension via the Merkle-Damgård transform

General design pattern for cryptographic hash functions

u reduces CR of general hash functions to CR of compression functions

u thus, in practice, it suffices to realize a collision-resistant compression function h

u compressing by 1 single bit is a least as hard as compressing by any number of bits!

10

output
n-bit
string

input
arbitrarily
long string

H
output
n-bit
string

input
l(n)-bit
string

h≤

Merkle-Damgård transform: Design

Suppose that h: {0,1}2n→ {0,1}n is a collision-resistant compression function

Consider the general hash function H: M = {x : |x|<2n} → {0,1}n, defined as

Merkle-Damgård design

u H(x) is computed by applying
h() in a “chained” manner
over n-bit message blocks

u pad x to define a number, say B, message blocks x1, …, xB, with |xi| = n

u set extra, final, message block xB+1 as an n-bit encoding L of |x|

u starting by initial digest z0 = IV = 0n, output H(x) = zB+1, where zi = hs(zi-1||xi)

11

Merkle-Damgård transform: Security

If the compression function h is CR,
then the derived hash function H is also CR!

12

Compression function design: The Davies-Meyer scheme
Employs PRF w/ key length m & block length n

u define h: {0,1}n+m → {0,1}n as h(x||k) = Fk(x) XOR x

Security

u h is CR, if F is an ideal cipher

13

Well known hash functions
u MD5 (designed in 1991)

u output 128 bits, collision resistance completely broken by researchers in 2004
u today (controlled) collisions can be found in less than a minute on a desktop PC

u SHA1 – the Secure Hash Algorithm (series of algorithms standardized by NIST)
u output 160 bits, considered insecure for collision resistance
u broken in 2017 by researchers at CWI

u SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)
u outputs 224, 256, 384, and 512 bits, respectively, no real security concerns yet
u based on Merkle-Damgård + Davies-Meyer generic transforms

u SHA3 (Kessac)
u completely new philosophy (sponge construction + unkeyed permutations)

14

SHA-2-512 overview

15

Current hash standards

16

6.3 Generic attacks

17

Generic attacks against cryptographic hashing

Assume a CR function h : {0,1}* → {0,1}n

u brute-force attack

u for x = 0 to 2n-1 (sequentially, for each string x in the domain):

u compute & record hash value h(x)

u if h(x) equals a previously recorded hash h(y) halt & output collision on x ≠ y

u birthday attack

u surprisingly, a more efficient generic attack exists!

18

m=365Pr[E]

k

Birthday paradox

“In any group of 23 people (or more), it is more likely (than not) that
at least two individuals have their birthday on the same day”

u based on probabilistic analysis of a random “balls-into-bins” experiment:
“k balls are each, independently and randomly, thrown into one out of m bins”

u captures likelihood that event E = “two balls land into the same bin” occurs

u analysis shows: Pr[E] » 1 - e-k(k-1)/2m (1)

u if Pr[E] = 1/2, Eq. (1) gives k » 1.17 m½

u thus, for m = 365, k is around 23 (!)

u assuming a uniform birth distribution

19

Birthday attack

Applies “birthday paradox” against cryptographic hashing

u exploits the likelihood of finding collisions for hash function h
using a randomized search, rather than an exhausting search

u analogy

u k balls: distinct messages chosen to hash

u m bins: number of possible hash values

u independent & random throwing

u random message selection + hash mapping

20

Mt

hash function h

Mj

Mi

M1…Mk

…

bin 1 bin 2 bin m

Probabilistic analysis

Experiment
u k balls are each, independently and randomly, thrown into one out of m bins

Analysis
u the probability that the i-th ball lands in an empty bin is: 1 - (i - 1)/m

u the probability Fk that after k throws, no balls land in the same bin is:

 Fk = (1 - 1/m) (1 - 2/m) (1 - 3/m) … (1 - (k - 1)/m)

u by the standard approximation 1 - x » e-x: Fk » e-(1/m + 2/m + 3/m + … + (k-1)/m) = e-k(k-1)/2m

u thus, two balls land in same bin with probability Pr[E] = 1 - Fk = 1 - e-k(k-1)/2m

u lower bound – Pr[E] increases if the bin-selection distribution is not uniform

21

What birthday attacks mean in practice…

22

u # hash evaluations for finding collisions on n-bit digests with probability p

u for m = 2n, average # hash evaluations before finding the first collision is
1.25(m)1/2 = 1.25 x 2n/2

n m

Overall

Assume a CR function h producing hash values of size n

u brute-force attack

u evaluate h on 2n + 1 distinct inputs, enumerated by counting

u by the “pigeon hole” principle, at least 1 collision will be found

u birthday attack

u evaluate h on (much) fewer distinct randomly selected inputs

u by “balls-into-bins” probabilistic analysis, at least 1 collision will more likely be found

u when hashing only 2n/2 distinct random inputs, it’s more likely to find a collision!

u thus, achieve N-bit security, we need hash values of length (at least) 2N

23

6.4 Applications to
cryptography

24

Hash functions enable efficient MAC design!

Back to problem of designing secure MAC for messages of arbitrary lengths

u so far, we have seen two solutions

u block-based “tagging”

u based on PRFs
u inefficient

u CBC-MAC

u also based on PRFs
u more efficient

25

Fk

r||1||δ||m1

t1,

Fk

t2,

Fk

td

…

t = r,

r||2||δ||m1 r||d||δ||m1

[1] Hash-and-MAC: Design

Generic method for designing secure MAC for messages of arbitrary lengths
u based on CR hashing and any fix-length secure MAC

u new MAC (Gen’, Mac’, Vrf’) as the name suggests

u Gen’: instantiate H and Mack with key k

u Mac’: hash message m into h = H(m), output Mack-tag t on h

u Vrf’: canonical verification
26

m

t

MacHm H(m) m

t

Mac’

Mac

hash

h = H(m)

[1] Hash-and-MAC: Security

The Hash-and-MAC construction is a secure as long as
u H is collision resistant; and

u the underlying MAC is secure

Intuition
u since H is CR:

authenticating digest H(m) is a good as authenticating m itself!

27

m

t

Mac’

Mac

hash

h = H(m)

[2] Hash-based MAC

u so far, MACs are based on block ciphers

u can we construct a MAC based on CR hashing?

28

[2] A naïve, insecure, approach

Set tag t as:

Mack(m) = H(k||m)
u intuition: given H(k||m) it should be infeasible to compute H(k||m’), m’ ≠ m

Insecure construction

u practical CR hash functions
employ the Merkle-Damgård design

u length-extension attack

u knowledge of H(m1) makes it feasible to compute H(m1||m2)

u by knowing the length of m1, one can learn internal state zB even without knowing m1!

29

[2] HMAC: Secure design

Set tag t as:
HMACk[m] = H [(k Å opad) || H[(k Å ipad) || m]]

u intuition: instantiation of hash & sign paradigm
u two layers of hashing H

u upper layer
u y = H((k Å ipad) || m)
u y = H’(m), i.e., “hash”

u lower layer

u t = H ((k Å opad) || y’)
u t = Mac’(kout, y’), i.e., “sign”

30

[2] HMAC: Security

If used with a secure hash function and according to specs, HMAC is secure

u no practical attacks are known against HMAC

31

6.5 Applications to
security

32

Generally: Message digests
Short secure description of data primarily used to detect changes

33

Encrypted for
authenticity

M

Hash
function

Message
digest

“one way
compression”

Application 1: Digital envelops

Commitment schemes
u two operations

u commit(x, r) = C
u i.e., put message x into an envelop (using randomness r)

u commit(x, r) = h(x || r)
u hiding property: you cannot see through an (opaque) envelop

u open(C, m, r) = ACCEPT or REJECT

u i.e., open envelop (using r) to check that it has not been tampered with
u open(C, m, r): check if h(m || r) =? C

u binding property: you cannot change the contents of a sealed envelop

34

Application 1: Security properties

Hiding: perfect opaqueness
u similar to indistinguishability; commitment reveals nothing about message

u adversary selects two messages x1, x2 which he gives to challenger

u challenger randomly selects bit b, computes (randomness and) commitment Ci of xi

u challenger gives Cb to adversary, who wins if he can find bit b (better than guessing)

Binding: perfect sealing
u similar to unforgeability; cannot find a commitment “collision”

u adversary selects two distinct messages x1, x2 and two corresponding values r1, r2

u adversary wins if commit(x1, r1) = commit(x2, r2)

35

Example 1: Fair digital coin flipping

Problem

u To decide who will do the dishes: Alice is to call the coin flip & Bob is to flip the coin

u But Alice may change her mind, Bob may skew the result

Protocol

u 1. Alice calls the coin flip but only tells Bob a commitment to her call

u 2. Bob flips the coin & reports the result

u 3. Alice reveals what she committed to & Bob verifies that Alice's call matches her commitment

u If Alice’s revealed commitment matches Bob’s reported result, Alice wins; else Bob wins

36

Example 1: Fair digital coin flipping (cont.)

Protocol

u 1. Alice calls the coin flip but only tells Bob a commitment to her call

u 2. Bob flips the coin & reports the result

u 3. Alice reveals what she committed to & Bob verifies that Alice's call matches her commitment

u If Alice’s revealed commitment matches Bob’s reported result, Alice wins; else Bob wins

Security

u Hiding: Bob does not get any advantage by seeing Alice’s commitment

u Binding: Alice cannot change her mind after the coin is flipped

37

Application 2: Forward-secure key rotation
Alice and Bob secretly communicate using symmetric encryption
u Eve intercepts their messages and later breaks into Bob’s machine to steal the shared key

38

s1 = h s2 h s3 h …sk h sk+1

key
leakage

k

Alice Bob

key k
key k

✗

Application 3: Hash values as file identifiers

Consider a cryptographic hash function H applied on a file F

u the hash (or digest) H(M) of F serves as a unique identifier for F

u “uniqueness”

u if another file F’ has the same identifier, this contradicts the security of H

u thus

u the hash H(F) of F is like a fingerprint
u one can check whether two files are equal by comparing their digests

Many real-life applications employ this simple idea!

39

Examples
3.1 Virus fingerprinting

u When you perform a virus scan over your
computer, the virus scanner application tries
to identify and block or quarantine programs
or files that contain viruses

u This search is primarily based on comparing
the digest of your files against a database of
the digests of already known viruses

u The same technique is used for confirming
that is safe to download an application or
open an email attachment

3.2 Peer-to-peer file sharing
u In distributed file-sharing applications (e.g., systems

allowing users to contribute contents that are shared
amongst each other), both shared files and
participating peer nodes (e.g., their IP addresses) are
uniquely mapped into identifiers in a hash range

u When a given file is added in the system it is
consistently stored at peer nodes that are
responsible to store files those digests fall in a
certain sub-range

u When a user looks up a file, routing tables (storing
values in the hash range) are used to eventually
locate one of the machines storing the searched file

40

Example 3.3: Data deduplication

Goal: Elimination of duplicate data

u Consider a cloud provider, e.g., Gmail or
Dropbox, storing data from numerous users.

u A vast majority of stored data are duplicates;
e.g., think of how many users store the same
email attachments, or a popular video…

u Huge cost savings result from deduplication:
u a provider stores identical contents

possessed by different users once!

u this is completely transparent to end users!

Idea: Check redundancy via hashing

u Files can be reliably checked whether they are
duplicates by comparing their digests.

u When a user is ready to upload a new file to the
cloud, the file’s digest is first uploaded.

u The provider checks to find a possible duplicate,
in which case a pointer to this file is added.

u Otherwise, the file is being uploaded literally

u This approach saves both storage and bandwidth!

41

Application 4: Concealing stored passwords

Goal: User authentication

u Today, passwords are the dominant means for
user authentication, i.e., the process of
verifying the identity of a user (requesting
access to some computing resource).

u This is a “something you know” type of user
authentication, assuming that only the
legitimate user knows the correct password.

u When you provide your password to a
computer system (e.g., to a server through a
web interface), the system checks if your
submitted password matches the password
that was initially stored in the system at setup.

Problem: How to protect password files

u If password are stored at the server in the clear,
an attacker can steal the password file after
breaking into the authentication server – this type
of attack happens routinely nowadays…

u Password hashing involved having the server
storing the hashes of the users passwords.

u Thus, even if a password file leaks to an attacker,
the onewayness of the used hash function can
guarantee some protections against user-
impersonation simply by providing the stolen
password for a victim user.

42

Example 4: Password storage

Plaintext Concealed via hashing

43

Application 5: Hash-and-digitally-sign

Very often digital signatures are used with hash functions
u the hash of a message is signed, instead of the message itself

Signing message M
u let h be a cryptographic hash function, assume RSA setting (n, d, e)
u compute signature σ = h(M)d mod n
u send σ, M

Verifying signature σ
u use public key (e,n)
u compute Η = σe mod n
u if H = h(M) output ACCEPT, else output REJECΤ

44

Application 6: The Merkle tree

u an alternative (to Merkle-Damgård) method to achieve domain extension

45

h14

d

h58h (h12 || h34) = = h (h56 || h78)

= h (h14 || h48)

h12h (h1 || h2) = h34

h56
h78

h1

let hi = h(Fi), 1 ≤ i ≤ n
h2 … h7 h8

Motivation: Secure cloud storage

u Bob has files f1, f2,…,fn

u Bob sends to Amazon S3 (cloud storage service)

u the hashes h(r||f1), h(r||f2),…, h(r||fn)

u files f1, f2,…,fn

u Bob stores randomness r (and keeps it secret)

u Every time Bob reads a file f1, he also reads h(r||fi) and verifies f1 integrity

u Any problems with writes?

46

server
upload files

user

files

(1)

server

files

user(2)

files = (F1, F2, …, F7, F8)

Cloud storage model

server

files

give me
file F1

user (3)

files = (F1, F2, …, F7, F8)

server

files
here it is, F1’

user(4)

F1’ = #@$@!#^@$^… (altered)

Cloud storage model
- attack by malicious server

server
2. upload files

user

files

(5)

files = F = (F1, F2, …, F7, F8)
1. pre-process files

using CR hash function h

server

files

user(6)

digest

digest d is computed over all files
|d| << |F|

Secure cloud storage model
- integrity protection via hashing

server

files

user

d

(7)

4. verification

+
3. “proof”

(or helper information)

server

files

2. here it is, F1’
user

“is F1’ intact?”
(8)

files = (F1, F2, …, F7, F8)

1. give me
file F1

Secure cloud storage model
- how verification works

server

files

user

d

(9)

Secure cloud storage model
- verification via hashing

+
“proof”

(or helper information)

here it is, F1’

verification
“is F1’ intact?”

u user has
u authentic digest d (locally stored)
u file F1’ (to be checked/verified as it can be altered)
u proof (to help checking integrity, but it can be maliciously chosen)

u verification involves (performed locally at user)
u combine the file F1’ with the proof to re-compute candidate digest d’
u check if d’ = d
u if yes, then F1 is intact; otherwise tampering is detected!

Overall: Data authentication via the Merkle tree

52

h14

d

h58h (h12 || h34) = = h (h56 || h78)

= h (h14 || h48)

4. verification

F = (F1, F2, …, F8)
d

1. give me file F1

userserver

files +
3. “proof”

(or helper information)

2. here it is, F1’

h12h (h1 || h2) = h34

h56 h78

h1 let hi = h(Fi), 1 ≤ i ≤ nh2 … h7 h8

