
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 4: Cryptography III
Co-Instructor: Nikos Triandopoulos

February 4, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Override requests

u Status update

u Course updates

u Homework 1, Project 1 to get new submission dates

u To provide more time & better preparation
u To avoid possible confusion

u Due to the specific order/pace with which topics are covered in class

u Ed Discussion, Top Hat (code: 084705), Gradescope (to become available soon)

2

Today

u Cryptography

u Ciphers in practice

u Stream & Block ciphers
u Modes of operations for encryption
u DES, AES

3

4.0 Symmetric encryption
in practice

4

Big picture

Secret communication

u We learned what it means for a cipher to be perfectly secure

u We learned that the simple OTP cipher achieves this property

u XOR (mask) message (once) with the secret key (random pad)

u …but it cannot be used in practice!

u We learned how we can fix this problem

u just use OTP with a freshly-generated “random looking” pads

u mask each message once with a pseudorandom pad

5

Big picture (cont.)

Secret communication

u But there is no free lunch…

u if we mask each message once with a pseudorandom pad,
we must lose perfect secrecy!

u because “random looking” pads are not random…

u But not perfect won’t be imperfect – it will be close to perfect

u for all practical purposes

u “random looking” pads will be as random as truly random ones
u OTP + pseudo-randomness will be as secure as (standard) OTP

6

4.1 Computational
security

7

The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

u This scheme has some major drawbacks

u it employs a very large key which can be used only once!

u Such limitations are unavoidable and make OTP not practical

u why?

8

Now, what?

Our approach: Relax perfectness for cipher security

Initial model

u Perfect secrecy (or security) guarantees that

u the ciphertext leaks (absolutely) no extra information about the plaintext

u (unconditionally) to adversaries of unlimited computational power

Refined model

u Computational security guarantees a relaxed notion of security, namely that

u the ciphertext leaks a tiny amount of extra information about the plaintext

u to adversaries with bounded computational power

9

Computational security

General concept in Cryptography

Computational security of a cryptographic scheme guarantees that

u (1) the scheme can be broken only with a tiny likelihood

u (2) by adversaries with bounded computational power

In contrast to perfect or information-theoretic or unconditional security

u which is typically harder, more costly or, often impossible, to achieve

10

Computational security (cont.)

General concept in Cryptography

u de facto model for security in most settings

u based on an underlying hardness (computational) assumption

u integral part of modern cryptography

u still allowing for rigorous mathematical proof of security

u Asymptotic description of results

“A scheme is computationally secure if
any efficient attacker succeeds in breaking it

with at most negligible probability”

11

Computational security (cont.)

General concept in Cryptography

u entails two relaxations

u security is guaranteed against efficient adversaries

u if an attacker invests in sufficiently large resources, it may break security

u goal: make required resources larger than those available to any realistic attacker!

u security is guaranteed in a probabilistic manner

u with some small probability, an attacker may break security

u goal: make attack probability sufficiently small so that it can be practically ignored!

12

Security relaxation for encryption

Perfect security: |k| = 128 bits, M, EncK(M) are independent, unconditionally
u no extra information is leaked to any attacker

Computational security: M, EncK(M) are independent, for all practical purposes
u no extra information is leaked but a tiny amount

u e.g., with prob. 2-128 (or much less than the likelihood of being hit by lighting)
u to computationally bounded attackers

u e.g., who cannot count to 2128 (or invest work of more than one century)

u attacker’s best strategy remains ineffective

u random guess a secret key or exhaustive search over key space (brute-force attack)

13

Towards a rigorous definition of computational security

Concrete approach

u “A scheme is (t,ε)-secure if any attacker A, running for time at most t, succeeds in
breaking the scheme with probability at most ε”

Asymptotic approach

u “A scheme is secure if any efficient attacker A succeeds in breaking the scheme with
at most negligible probability”

14

Examples
u almost optimal security guarantees

u if key length n, the number of possible keys is 2n

u attacker running for time t succeeds w/ prob. at most ~ t/2n (brute-force attack)

u if n = 60, security is enough for attackers running a desktop computer

u 4 GHz (4x109 cycles/sec), checking all 260 keys require about 9 years

u if n = 80, a supercomputer would still need ~2 years

u today’s recommended security parameter is at least n = 128

u large difference between 280 and 2128; e.g., #seconds since Big Bang is ~258

u a once-in-100-years event corresponds to probability 2-30 of happening at a particular sec

u if within 1 year of computation attack is successful w/ prob. 1/260

then it is more likely that Alice and Bob are hit by lighting

15

Examples: Big Numbers in the real world

u Odds for all 5 numbers + Powerball

u 292x106 => 238

u The Age of the Universe in Seconds

u 4.3×1017 => 258

u # of cycles in a century of a 4 GHz CPU => 264

u # of arrangements of a Rubik's cube 4.3×1019 => 265

u Atoms in the Earth 1.33x1050 => 2166

u Electrons in the universe 1080 => 2266

16

4.2 Introduction to
modern cryptography

17

Cryptography / cryptology

u Etymology

u two parts: “crypto” + “graphy” / “logy”

u original meaning: κρυπτός + γράφω / λόγος (in Greek)

u English translation: secret + write / speech, logic

u meaning: secret writing / the study of secrets

u Historically developed/studied for secrecy in communications

u i.e., message encryption in the symmetric-key setting

u main application area: use by military and governments

18

Classical cryptography Vs. modern cryptography

antiquity – ~70s

u “the art or writing and solving codes”

u approach

u ad-hoc design
u trial & error methods
u empirically evaluated

~80s – today

u “the study of mathematical techniques
for securing digital information, systems,
and distributed computations again
adversarial attacks”

u approach
u systematic development & analysis
u formal notions of security / adversary
u rigorous proofs of security (or insecurity)

19

Example: Classical Vs. modern cryptography for encryption

antiquity – ~70s

“the art of writing and solving codes”

u ad-hoc study
u vulnerabilities/insecurity of

u Caesar's cipher

u shift cipher

u mono-alphabetic substitution cipher

~80s – today

“the study of mathematical techniques for
securing information, systems, and distributed
computations against adversarial attacks”

u rigorous study
u problem statement: secret communication over

insecure channel
u abstract solution concept: symmetric encryption,

Kerckhoff’s principle, perfect secrecy
u concrete solution & analysis: OTP cipher, proof of

security

20

Example: Differences of specific ciphers

Caesar’s/shift/mono-alphabetic cipher

u substitution ciphers
u Caesar's cipher

u shift is always 3

u shift cipher

u shift is unknown but
the same for all characters

u mono-alphabetic substitution/Vigènere cipher
u shift is unknown but

the same for all/many character occurrences

The one-time pad

u also, a substitution cipher
u shift is unknown and

independent for each character occurrence

21

Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions (what it means for a crypto primitive to be “secure”?)

u B) precise assumptions (which forms of attacks are allowed – and which aren’t?)

u C) provable security (why a candidate instantiation is indeed secure – or not)?

22

Recall: Secure against what?

u “Security” has no meaning per se…

u The security of a system, application, or protocol is always relative to

u A set of desired properties

u An adversary with specific capabilities

u Recall: Difficult to define general rules for security

u Adapt best practices, heuristics based on the system we are considering!

23

Example: Physical safes

24

TL-15 ($3,000)
15 minutes with
common tools

TL-30 ($4,500)
30 minutes with
common tools

TRTL-30 ($10,000)
30 minutes with

common tools and a
cutting torch

TXTL-60 (>$50,000)
60 minutes with
common tools, a

cutting torch, and up
to 4 oz of explosives

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

25

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

26

A) Formal definitions

abstract but rigorous description of security problem

u computing setting (to be considered)

u involved parties, communication model, core functionality

u underlying cryptographic scheme (to be designed)

u e.g., symmetric-key encryption scheme

u desired properties (to be achieved)

u security related

u non-security related

u e.g., correctness, efficiency, etc.

27

Why formal definitions are important?

u successful project management

u good design requires clear/specific security goals

u helps to avoid critical omissions or over engineering

u provable security

u rigorous evaluation requires a security definition

u helps to separate secure from insecure solutions

u qualitative analysis/modular design

u thorough comparison requires an exact reference

u helps to secure complex computing systems

28

Example: Problem at hand

abstract but rigorous description of security problem (to be solved)

29

secret communication

Insecure channel

Example: Formal definitions (1)

u computing setting (to be considered)

u e.g., involved parties, communication model, core functionality

30

Eve

BobAlice m

Alice, Bob, Eve

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages

Alice/Bob may transform the transmitted/received message and share info

Example: Formal definitions (2)

u underlying cryptographic scheme (to be designed)

 symmetric-key encryption scheme

u Alice and Bob share and use a key k

u Alice encrypts plaintext m to ciphertext c and sends c instead of m

u Bob decrypts received c to get a message m’

31

Eve

Alice Bobm cencrypt

k k

decrypt mc

Example: Formal definitions (3)

u desired properties (to be achieved)

u security (informal)

u correctness (informal)

32

Eve

Alice Bobm cencrypt

k k

decrypt mc

Eve “cannot learn” m (from c)

If Alice encrypts m to c, then Bobs decrypts c to (the original message) m

Example: Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

u a message space M, |M| > 1, and a triple (Gen, Enc, Dec)

u Gen: probabilistic key-generation algorithm, defines key space K

u Gen(1n) → k ∈ K (security parameter n)

u Enc: probabilistic encryption algorithm, defines ciphertext space C

u Enc: K × M → C , Enc(k, m) = Enck(m) → c ∈ C

u Dec: deterministic encryption algorithm

u Dec: K × C → M , Dec(k, c) = Deck(c) := m ∈M or ⊥

33

Example: Formal definitions (4)
Perfect correctness

u for any k ∈ K , m ∈ M and any ciphertext c output of Enck(m), it holds that

Pr[Deck (c) = m] = 1
Perfect security (or information-theoretic security)

u the adversary should be able to learn no additional information on m

34

Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!
random

experiment
DM → m
DK → k

Enck(m) → c

Example: Equivalent definitions of perfect security

1) a posteriori = a priori

For every DM, m ∈M and c ∈ C, for
which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

2) C is independent of M

For every m, m’ ∈M and c ∈ C,
it holds that

Pr[EncK(m) = c] = Pr[EncK(m’) = c]

35

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

|m0|=|m1|

From perfect to computational EAV-security

u perfect security: M, EncK(M) are independent

u absolutely no information is leaked about the plaintext

u to adversaries that unlimited computational power

u computational security: for all practical purposes, M, EncK(M) are independent

u a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-60)

u to adversaries with bounded computational power (e.g., attacker invests 200ys)

u attacker’s best strategy remains ineffective

u random guess on secret key; or

u exhaustive search over key space (brute force attack)

36

Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

u require that m0, m1 are chosen by a PPT adversary

u require that no PPT adversary can distinguish Enck(m0) from Enck(m1)

 non-negligibly better than guessing

37

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

PPT

PPT

negl

+ negl |m0|=|m1|

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

38

B) Why precise assumptions are important?

u basis for proofs of security

u security holds under specific assumptions

u comparison among possible solutions

u relations among different assumptions

u stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

u refutable Vs. non-refutable

u flexibility (in design & analysis)

u validation – to gain confidence or refute

u modularity – to choose among concrete schemes that satisfy the same assumptions

u characterization – to identify simplest/minimal/necessary assumptions
39

Example: Precise assumptions (1)

u adversary
u type of attacks – a.k.a. threat model

u capabilities (e.g., a priori knowledge, access to information, party corruptions)
u limitations (e.g., bounded memory, passive Vs. active)

40

Eve

Alice Bobm

eavesdropping

Eve may know the a priori distribution of messages sent by Alice

Eve doesn’t know/learn the secret k (shared by Alice and Bob)

cencrypt

k k

decrypt mc

Example: Precise assumptions (2)

u computational assumptions (about hardness of certain tasks)
u e.g., factoring of large composite numbers is hard

41

Eve

Alice Bobm

no computational assumptions
– a.k.a. perfect secrecy (or information-theoretic security)

cencrypt

k k

decrypt mc

Example: Precise assumptions (3)

u computing setting
u system set up, initial state, key distribution, randomness…

u means of communication (e.g., channels, rounds, messages…)
u timing assumptions (e.g., synchronicity, epochs, …)

42

Eve

Alice Bobm

key k is generated
randomly using
the uniform
distribution

cencrypt

k k

decrypt mc

key k is securely distributed to and securely stored at Alice and Bob

one message m is only communicated
(for simplicity in our initial security definition)

k, m are chosen independently

Possible eavesdropping attacks (I)
An attacker may possess a

u (a) collection of ciphertexts
u ciphertext only attack

u this will be the default attack type
when we will next define the
concept of perfect security

43

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

(a)

Possible eavesdropping attacks (II)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

44

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

plaintext ciphertext

key

(b)

Eve

Encryption
Algorithm

Possible eavesdropping attacks (III)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs
 for plaintexts selected by the attacker

u chosen plaintext attack

45

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

(c)

Eve

Encryption
Algorithm

Possible eavesdropping attacks (IV)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs
 for plaintexts selected by the attacker

u chosen plaintext attack

u (d) collection of plaintext/ciphertext pairs
 for (plaintexts and) ciphertexts selected
 by the attacker

u chosen ciphertext attack

46

IJCGA, CAN DO
HIFFA GOT
TIME.

plaintext ciphertext

key

001101
110111

(d)

Eve

Decryption
Algorithm

Main security properties against eavesdropping
“plain” security

u protects against ciphertext-only attacks

u EAV-attack

“advanced” security

u protects against chosen plaintext attacks

u CPA-attack

47

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

Eve

Encryption
Algorithm

ATΠ

Game-based computational EAV-security

48

m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing

ATΠ

Game-based computational EAV-security

49

m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

Alternatively:
“is semantically secure”

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing

ATΠ

Game-based computational CPA-security

50

m0, m1Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

mi

ci
Enc(k,)

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice

On CPA security

Facts

u Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

u CPA security implies probabilistic encryption – can you see why?

u EAV-security for multiple messages implies probabilistic encryption

51

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

52

C) Provably security

Security

u subject to certain assumptions, a scheme is proved to be secure according to a
specific definition, against a specific adversary

u in practice the scheme may break if

u some assumptions do not hold or the attacker is more powerful

Insecurity

u a scheme is proved to be insecure with respect to a specific definition

u it suffices to find a counterexample attack

53

Why provable security is important?

Typical performance

u in some areas of computer science
formal proofs may not be essential
u simulate hard-to-analyze algorithm to

experimentally study
its performance on “typical” inputs

u in practice, typical/average case occurs

Worst case performance

u in cryptography and secure protocol design
formal proofs are essential

u “experimental” security analysis is not possible

u the notion of a “typical” adversary makes little
sense and is unrealistic

u in practice, worst case attacks will occur
u an adversary will use any means

in its power to break a scheme

54

4.3 (Using OTP with)
Pseudo-randomness

55

Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random

56

Symmetric encryption as “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)

57

EncryptionPlaintext Ciphertext
… RESTUOKD … rrywytovty

key

state

STU
(block)(next block)

EncryptionPlaintext Ciphertext
OKD tty

key

4.3.1 Pseudorandom
generators

58

Stream ciphers

59

EncryptionPlaintext Ciphertext

… RESTUOKD … rrywytovty

key

state

Pseudorandom generators (PRGs)

Deterministic algorithm G that
on input a seed s∈{0,1}t, outputs G(s)∈{0,1}l(t)

G is a PRG if:

u expansion

u for polynomial l, it holds that for any n, l(n) > n

u models the process of extracting randomness from a short random string

u pseudorandomness

u no efficient statistical test can tell apart G(s) from a truly random string
60

s G(s) l(n)n
PRG

G

a.k.a. stream cipher

Generic PRG-based symmetric encryption

u Fixed-length message encryption

61

encryption scheme is plain-secure
as long as the underlying PRG is secure

Generic PRG-based symmetric encryption (cont.)

u Bounded- or arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateful stream cipher,

repeatedly, to encrypt/decrypt a stream of symbols

62

Stream ciphers: Modes of operations

u Bounded- or arbitrary-length message encryption

63

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

random IV used for every new message is sent along with ciphertext, advanced-secure

4.3.2 Pseudorandom
functions

64

Block ciphers

65

STU
(block)(next block)

EncryptionPlaintext Ciphertext

OKD tty

key

Realizing ideal block ciphers in practice

We want a random mapping of n-bit inputs to n-bit outputs
u there are ~2^(n2n) possible such mappings
u none of the above can be implemented in practice

Instead, we use a keyed function Fk : {0,1}n → {0,1}n

u indexed by a t-bit key k
u there are only 2t such keyed functions

u a random key selects a
“random-enough” mapping
or a pseudorandom function

66

Fk

x

y = Fk(x)

Generic PRF-based symmetric encryption

u Fixed-length message encryption

67

encryption scheme is advanced-secure
as long as the underlying PRF is secure

Generic PRF-based symmetric encryption (cont.)

u Arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateless block cipher,

repeatedly, to encrypt/decrypt a sequence of message blocks

68

4.4 Modes of operations

69

Block ciphers: Modes of operations (I)

u ECB - electronic code book

u insecure, of only historic value

u deterministic, thus not CPA-secure

u actually, not even EAV-secure

70

Electronic Code Book (ECB)

u The simplest mode of operation
u block P[i] encrypted into ciphertext block C[i] = Enck(P[i])

u block C[i] decrypted into plaintext block M[i] = Deck(C[i])

71

u poor security

u produces the same ciphertext on the
same plaintext (under the same key)

u documents and images are not suitable
for ECB encryption, since patterns in the
plaintext are repeated in the ciphertext

u e.g., ECB

Strengths & weaknesses of ECB

Strengths

u very simple
u allows for parallel encryptions

of the blocks of a plaintext
u can tolerate the loss or

damage of a block

Weaknesses

72

Block ciphers: Modes of operations (II)

u CBC – cipher block chaining

u CPA-secure if Fk a permutation

u uniform IV

u otherwise security breaks

u Chained CBC

u use last block ciphertext of current
message as IV of next message

u saves bandwidth but not CPA-secure

73

Cipher Block Chaining (CBC) [or chaining]

Alternatively, the previous-block ciphertext is “mixed” with the current-block plaintext
u e.g., using XOR

u each block is encrypted as C[i] = Enck (C[i -1] Å P[i]),

u each ciphertext is decrypted as P[i] = C[i -1] Å Deck (C[i])

u here, C[0] = IV is a uniformly random initialization vector that is transmitted separately

74

Enck

P[1]

IV

C[1]

Enck

P[2]

C[2]

Deck

P[1]

IV

C[1]

Deck

P[2]

C[2]

CBC

Block ciphers: Modes of operations (III)

u OFB – output feedback

u uniform IV

u no need message length to be multiple of n

u resembles synchronized stream-cipher mode

u CPA-secure if Fk is PRF

75

Block ciphers: Modes of operations (IV)

u CTR – counter mode

u uniform ctr

u no need message length to be multiple of n

u resembles synchronized stream-cipher mode

u CPA-secure if Fk is PRF

u no need for Fk to be invertible

u parallelizable

76

Notes on modes of operation

u block length matters

u if small, IV or ctr can be “recycled”

u IV are often misused

u e.g., reused or not selected uniformly at random

u in this case, CBC is a better option than OFB/CTR

77

Brute-force attacks against stream/block ciphers

Brute-force attack amounts to checking all possible 2t seeds/keys
u for block ciphers, by construction (due to confusion & diffusion, as we will see),

the key cannot be extracted even if a valid plaintext/ciphertext pair is captured
u thus, as expected, the longer the key size the stronger the security

78

4.5 Block ciphers in
practice: DES & AES

79

Recall: Stream ciphers

80

EncryptionPlaintext Ciphertext

… RESTUOKD … rrywytovty

key

state

Recall: Block ciphers

81

STU
(block)(next block)

EncryptionPlaintext Ciphertext

OKD tty

key

Stream Vs. Block ciphers

 Stream Block
Advantages • Speed of

transformation
• Low error

propagation

• High diffusion
• Immunity to

insertion of
symbol

Disadvantages • Low diffusion
• Susceptibility to

malicious
insertions and
modifications

• Slowness of
encryption

• Padding
• Error

propagation

82

Techniques used in practice for symmetric encryption

u Substitution
u exchanging one set of bits for another set

u Transposition
u rearranging the order of the ciphertext bits

u to break any regularities in the underlying plaintext

u Confusion
u enforcing complex functional relationship between the plaintext/key pair & the ciphertext

u e.g., flipping a bit in plaintext or key causes unpredictable changes to new ciphertext

u Diffusion
u distributes information from single plaintext characters over entire ciphertext output

u e.g., even small changes to plaintext result in broad changes to ciphertext

83

Substitution boxes

u substitution can also be done on binary numbers

u such substitutions are usually described by substitution boxes, or S-boxes

84

DES vs. AES

85

AES: Advanced Encryption System
u symmetric block cipher, a.k.a. Rijndael

u developed in 1999 by independent Dutch
cryptographers in response to the 1997 NIST’s
public call for a replacement to DES

u still in common use

u on the longevity of AES

u larger key sizes possible to use

u not known serious practical attacks

86

AES: Key design features
u use of substitution, confusion & diffusion
u block size is 128 bits
u variable-length keys: key size is 128, 192 or 256 bits

u variable number of rounds: 10, 12 or 14 rounds for keys of resp. 128, 192 or 256 bits
u depending on key size, yields ciphers known as AES-128, AES-192, and AES-256

87

AES: Basic structure

88

AES: Basic structure (cont.)

89

DES: The Data Encryption Standard

u Symmetric block cipher
u Developed in 1976 by IBM for the US National Institute of Standards and

Technology (NIST)
u Employs substitution & transposition, on top of each other, for 16 rounds

u block size = 64 bits, key size = 56 bits

u Strengthening (since 56-bit security is not considered adequately strong)
u double DES: E(k2, E(k1, m)), not effective!

u triple DES: E(k3, E(k2, E(k1, m))), more effective
u two keys, i.e., k1=k3, with E-D-E pattern, 80-bit security
u three keys with E-E-E pattern, 112-bit security

90

DES: Security strength

91

DES: High-level view

92

DES: Basic structure

93

DES: Initial and final permutations

u Straight P-boxes that are inverses of each other w/out crypto significance

94

DES: Round via Feistel network

u DES uses 16 rounds, each applying a Feistel cipher
u L(i) = R(i-1)

u R(i) = L(i-1) XOR f (K(i),R(i-1)),
where f applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output

95

DES: Low-level view

u Expansion box

u since RI−1 is a 32-bit input & KI is a 48-bit key,
we first need to expand RI−1 to 48 bits

u S-box

u where real mixing (confusion) occurs

u DES uses 8 6-to-4 bits S-boxes

96

DES: S-box in detail

97

