https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 15: OS Il

Co-Instructor: Nikos Triandopoulos
March 18, 2025

A7
N

0

BROWN

https://brown-csci1660.github.io/

CS1660: Announcements

¢ Course updates
¢ Homework 2 is due today

¢ Project 3 is out and due Thursday, April 3

¢ Where we are
/0 Part I: Crypto
/0 Part Il: Web (with demos coming soon)
, & Partlll: OS

¢ Part IV: Network

¢ Part V: Extras

Today

¢ OS security

File Permissions

Set-user-ID

* Set-user-ID (“suid” or “setuid”) bit
— On executable files, causes the program to run as file owner
regardless of who runs it
—lgnored for everything else

—In 10-character display, replaces the 4t character (x or -) with s
(or S if not also executable)
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid
-rwSr--r--: setuid, but not executable - not useful

4/7/25 5 File Permissions

Setuid Programs

* Unix processes have two user IDs:
— real user |D: user launching the process
— effective user ID: user whose privileges are granted to the process

* An executable file can have the set-user-I1D property (setuid)
enabled

* If a user A executes setuid file owned by B, then the
effective user ID of the process is B and not A

4/7/25 Operating Systems Security

Setuid Programs

* System call setuid(uid) allows a process to change its
effective user ID to uid

 Some programs that access system resources are owned by
root and have the setuid bit set (setuid programs)

—e.g., passwd and su

* Writing secure setuid programs is tricky because
vulnerabilities may be exploited by malicious user actions

4/7/25 Operating Systems Security

Set-group-ID

* Set-group-ID (“sgid” or “setgid”) bit

— On executable files, causes the program to run with the file’s group, regardless
of whether the user who runs it is in that group

— On directories, causes files created within the directory to have the same group

as the directory, useful for directories shared by multiple users with different
default groups

— lgnored for everything else
— In 10-character display, replaces 7t character (x or -) with s (or S if not also
executable)
-rwxr-sr-x: setgid file, executable by all

drwxrwsr-x: setgid directory; files within will have group of directory
-rw-r-Sr--: setgid file, but not executable - not useful

4/7/25 8 File Permissions

Symbolic Link

* In Unix, a symbolic link (aka symlink) is a file that points to
(stores the path of) another file

* A process accessing a symbolic link is transparently redirected
to accessing the destination of the symbolic link

Symbolic links can be chained, but not to form a cycle

In -s really_long_directory/even_longer_file_name myfile

4/7/25 Operating Systems Security

4/7/25

Gone for Ten Seconds

You leave your desk for 10
seconds without locking your
machine

The attacker sits at your desk
and types:

% cp /bin/sh /tmp

% chmod 4777 /tmp/sh

The first command makes a
copy of shell sh

The second command makes
sh a setuid program

Operating Systems Securi

What happens next?

The attacker can run the
copy of the shell with your
privileges

For example:

— Can read youir files

— Can change your files

Historical setuid Unix Vulnerabilities: lpr

 Command lpr * Attack

— running as root setuid — A dangerous combination: setuid,

tmp, symlinks, ...
— copied file to print, or symbolic /tmp, sy

link to it, to spool file named with
3-digit job number (e.g.,
print954.spool) in /tmp

— Create new password file
newpasswd

— Print a very large file
— lpr —s /etc/passwd

— Did not check if file already existed
— Print a small file 999 times

— Random sequence was predictable

and repeated after 1,000 times — lpr newpasswd

. — The password file is overwritten
* How can we exploit this? with newpasswd

4/7/25 Operating Systems Security 11

Beyond Setuid and Files

* Writing setuid programs is tricky e Consider alternatives

— Easy to inadvertently create

security vulnerabilities — Manage system resources via

— Unix variants have subtle different services
behaviors in setuid-related calls _ Use databases instead of files
* Access control to files is tricky and shared folders

— A user file can be accessed by any : !
user process — Use RPCs (including database

— Shared folders and predictable file queries) to request access to

names create security system resources
vulnerabilities

4/7/25 Operating Systems Security 12

Special

e setui executable runs with privileges of
gléss of who runs it

executable runs with privileges of
gpregardless of who runs it

executable runs with privileges of
gless of who runs it

executable runs with privileges o
pregardless of who runs it

Unprivileged user can run program with higher privileges!
=> Powerful, but very dangerous

Disclaimer

setuid/setgid is dangerous. Using it incorrectly can cause serious
problems.

Just as you should never implement your own crypto,
you should not write your own setuid/setgid programs.

You are about to see why.

16

Get variables

cs1660-user@®c010f6e96b02:~$ echo $TERM
xXterm

cs1660-user@®c010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable

cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@®6010f6e96b02:~$ echo $SOMETHING

Hello

Show the environment
cs1660-user@c@10f6e96bd2:~$ env

Syst
Set

Get variables
cs1660-user@®c010f6e96b02:~$ echo $TERM
xXterm

cs1660-user@®c010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable

cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@®6010f6e96b02:~$ echo $SOMETHING

Hello

Show the environment
cs1660-user@c@10f6e96bd2:~$ env

" " " | Scope is per-shell: log out/open new term => different vars ;

Get variables
cs1660-user@c@10f6e96b@2:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin

which: $PATH lookup
cs1660-user@c010f6e96b02:~$ which 1s
/usr/bin/1s

cs1660-user@6010f6e96b02:~$ which go
/usr/local/go/bin/go

Create a symlink

registrar@ceres:~$ 1ln -sv scripts/reg-v@l.sh reg.sh
reg.sh -> scripts/reg-v@l.sh

How it looks
registrar@ceres:~$ 1s -la reg.sh
Lrwxrwxrwx 1 reg reg 9 Mar 12 16:40 reg.sh -> scripts/reg-v01.sh

eg. Use 1t 1ike a normal file
registrar@ceres:~$./reg.sh

Create a symlink

registrar@ceres:~$ 1n —-sv scripts/reg-v@l.sh reg.sh
reg.sh -> scripts/reg-v0l.sh

How 1t looks
registrar@ceres:~$ 1s -la reg.sh
Lrwxrwxrwx 1 reg reg 9 Mar 12 16:40 reg.sh -> scripts/reg-v@l.sh

Use 1t just like a normal file
registrar@ceres:~$./reg.sh

Problem: anyone can create a symlink to anything!
=> Permissions checked on access, not at creation

Check for access
if ! __effective_user_can_access $code_from_user; then
echo "You don't have permission to view this file"

exit 1
fi

Do the access

if cmp --silent $code_expected $code_from_user; then
echo "Override code approved!"
add_to_course $course $user

else

echo "Please use a valid override code"
fi

So why is setuid/gid bad?

Up to the developer to decide what parts of the program can run
with elevated privileges

=> Particularly dangerous for shell scripts

27

setuid/setgid is dangerous...

In modern times: only for programs that really need it

» System programs that changing passwords/users, legacy
programs

— Don't do this yourself!

What else can we do?

29

user@shell:~$ su —c "command" other user

user@shell:~$ sudo whoami /etc/sudoers:
root Swheel ALL=(ALL) NOPASSWD: ALL

CDROM = NOPASSWD: /sbin/umount /CDROM,\
/sbin/mount -o nosuid\,nodev /dev/cd@a /CDROM

Any user may mount or unmount a CD-ROM on the machines in the CDROM
Host_Alias (orion, perseus, hercules) without entering a password.

sudo has a LOT of features, see
man sudoers for details!

Race Condition

* A race condition occurs when
two threads want to access the
same memory

 Run Thread 1() and Thread 2()
— Qutcomeis 1 or 2

Global x=0

34

1. if (laccess("/tmp/X", W_OK)) {

/* the real user ID has access right */ /X on
2. f = open("/tmp/X", O_WRITE); ted it
3. write_to_file(f);

}

alse links

/* the real user ID does not have

access right */
4. fprintf(stderr, "Permission denied\n"); symlinks

}

Source: Kevin D

35

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

1.

4.

if (laccess("/tmp/X", W_OK)) {
/* the real user ID has access right */
f = open("/tmp/X", O_WRITE);
write_to_file(f);
}

else {

/* the real user ID does not have
access right */

fprintf(stderr, "Permission denied\n");

}

k to

36

Attempt to Fix the Race Condition

1. Istat("/tmp/X", &statBefore);

2. if (laccess("/tmp/X", O_RDWR)) {

3. intf=open("/tmp/X", O_RDWR);

4. fstat(f, &statAfter);

5. if (statAfter.st_ino == statBefore.st_ino) {
/* the I-node is still the same */

6. write_to_file(f);
}

7. else perror("Race Condition Attacks!");

}

8. else fprintf(stderr, "Permission denied\n");

}

Source: Kevin Du, Race Condition Vulnerability, Lecture Notes

\stat and fstat access file
descriptor for a path, which
includes unique file ID (st_ino)

— |stat does not traverse symlink

— fstat accesses descriptor of open file,
after symlink traversed by open

Step (5) compares IDs of

— file checked in (1) and

— file openedin (3)
Check-use-check again approach

— Defeats swapping in symlink between
access and open

Fails also if /tmp/X is a symlink
when (2) is executed

37

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

Does the Fix Work?

1. Istat("/tmp/X", &statBefore);
2. if (laccess("/tmp/X", O_RDWR)) {

3. intf=open("/tmp/X", O_RDWR);

4. fstat(f, &statAfter);

5. if (statAfter.st_ino == statBefore.st_ino) {
/* the I-node is still the same */

6. write_to_file(f);
}

7. else perror("Race Condition Attacks!");

}

8. else fprintf(stderr, "Permission denied\n");

}

New attack

— Before (1) /tmp/X is a hard
link to /etc/passwd

— Between (1) and (2) swap in
hard link to user-owned file

— Between (2) and (3) swap in
again hard link to
/etc/passwd

This passes the ID check

in (5) and allows the user

to write to /etc/passwd

38

Negative Result

* Assumptions * Proof
— Setuid program — Attacker can always swap good
— Path-based permission check for file before access and bad file
real user ID via syscall after access
access(path, permission) that — Istat/fstat do not help since they

returns O or -1 are path-based as well

— No atomic check-and-open file e Reference

syscall — Drew Dean, Alan J. Hu: Fixing

Races for Fun and Profit: How to
— Program is vulnerable to TOCTOU Use access (2). USENIX Security
race condition Symposium, 2004.

e Theorem

39

https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf

Mitigating and Eliminating Race Conditions

* Hardness amplification * Temporary privilege downgrade
— Force the adversary to win a large — Within same process
number of races instead of just one * Drop to real user ID privileges via
or two in order to exploit the setuid(real_userid)
vulnerability : CR)F’et” ks .
. * Restore root privileges
Reduces the probabl_llty of success il process
— Complex to accomplish correctly * Fork child process with real user 1D
— Reference privileges to open file
 Dan Tsafrir, Tomer Hertz, David - Approach not portable across Unix
Wagner, Dilma Da Silva: Portably variants
Solving File TOCTTOU Races with https://www.usenix.org/legacy/events/sec0?2
Hardness Amplification. USENIX File /full papers/chen/chen.pdf

and Storage Technologies, 2008

40

https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf
https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf
https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf

41

Other software security
topics

Incomplete mediation

¢ Access control

¢ what subject can perform what operation on what object
¢ Mediation (means checking)

¢ verifying that the subject is authorized to perform the operation on an object
¢ Preventing incomplete mediation

¢ validate all input

+ limit users’ access to sensitive data and functions

¢ complete mediation using a reference monitor

+ access control that is always invoked, tamperproof and verifiable

42

Time-of-Check to Time-of-Use

¢ mediation performed with a “bait and switch” in the middle
¢ between access check and resource use, data should remain unchanged

¢ exploits the details in the two processes

File: Action:
my_file Change byte 4 to A

.

File: Action:
your_ file Delete file

43

Race conditions

A Seat available?

Yes

Book seat

/4

/Gl

Reservation system

Seat available?

Time

Race conditions

A Seat available?

iy

A

Book seat

Reservation system

B Seat available?

Yes

Book seat

Time
45

Other programming oversights

¢ Undocumented access points (backdoors)
¢ Off-by-one errors

¢ Integer overflows

¢ Un-terminated null-terminated string

¢ Parameter length, type, or number errors

¢ Unsafe utility libraries

46

=

‘x.»' o o) ‘x.»' ‘x.»' T s ‘x.»' ‘x.»' ‘x.»' ‘x.»' ‘x.»' = ‘x.»' = ‘x.»' = ‘x.»' = ‘x.»' = T s = :;g

'“"‘:%J;%'%. “"‘\4@*%‘%.%&';8&&“4@*%‘ﬁ;.—g&';ﬁyﬂ“"%%}*%ﬁ;- ““‘4@_.;%w.—g&';&“‘v@_.;%ﬁ..—g&%‘vg@_.;%w.—g&%‘v;@*%w.—g‘_&ﬁyg“%@*%w.@%‘@%w.@%%@_.;%w.—g‘_&%yq,“‘%@_.;%ﬁ..—g‘_&%yq,“‘%@%ﬂ.—gﬁ%&yﬂwﬂﬁw.@%‘@@%w.W4

- -
525‘” ‘- R ‘-‘R%: = = = ,‘,‘: = ,m: R S I e e e e s ,,,“" = : ‘: — =

s o o s o s o s o o 2 o 2 s o o o o s o s

5 e s = ﬁ'-“a = = ﬁ'-“a
= 5

s ' ~ e ’ ~1 -&; = ~1 »; = ~ -; 4 ’ ~ ; 4 2 ~ -; 4 ’ ~1 L = ’ ~1 L = ’ ~1 »; = ~1 »; = ’ ~1 »; = ~1 .»; = ~1 L = - 2 >
e e e e e e e e e

B e e e e e g e e e e M g L e

Malware

¢ Programs planted by an agent with malicious intent
¢ to cause unanticipated or undesired effects
¢ Virus

¢ a program that can replicate itself

pass on malicious code to other non-malicious programs by modifying them
¢ Worm
¢ aprogram that spreads copies of itself through a network
¢ Trojan horse

¢ code that, in addition to its stated effect, has a second, nonobvious, malicious effect

48

Types of malware

Code Type Characteristics

Virus Code that causes malicious behavior and propagates copies of itself
to other programs

Trojan horse Code that contains unexpected, undocumented, additional
functionality

Worm Code that propagates copies of itself through a network; impact is
usually degraded performance

Rabbit Code that replicates itself without limit to exhaust resources

Logic bomb Code that triggers action when a predetermined condition occurs

Time bomb Code that triggers action when a predetermined time occurs

Dropper Transfer agent code only to drop other malicious code, such as
virus or Trojan horse

Hostile mobile code Code communicated semi-autonomously by programs transmitted

agent through the web

Script attack, Malicious code communicated in JavaScript, ActiveX, or another

JavaScript, Active scripting language, downloaded as part of displaying a web page

code attack

49

Types of malware (cont.)

Code Type

Characteristics

RAT (remote access
Trojan)

Trojan horse that, once planted, gives access from remote location

Spyware Program that intercepts and covertly communicates data on the
user or the user’s activity

Bot Semi-autonomous agent, under control of a (usually remote)
controller or “herder”; not necessarily malicious

Zombie Code or entire computer under control of a (usually remote)

program

Browser hijacker

Code that changes browser settings, disallows access to certain
sites, or redirects browser to others

Rootkit

Code installed in “root” or most privileged section of operating
system; hard to detect

Trapdoor or backdoor

Code feature that allows unauthorized access to a machine or
program; bypasses normal access control and authentication

Tool or toolkit

Program containing a set of tests for vulnerabilities; not dangerous
itself, but each successful test identifies a vulnerable host that can
be attacked

Scareware

Not code; false warning of malicious code attack

U

History of malware

Year Name Characteristics

1982 Elk Cloner First virus; targets Apple II computers

1985 Brain First virus to attack IBM PC

1988 Morris worm Allegedly accidental infection disabled large portion of the
ARPANET, precursor to today’s Internet

1989 Ghostballs First multipartite (has more than one executable piece) virus

1990 Chameleon First polymorphic (changes form to avoid detection) virus

1995 Concept First virus spread via Microsoft Word document macro

1998 Back Orifice Tool allows remote execution and monitoring of infected
computer

1999 Melissa Virus spreads through email address book

2000 IloveYou Worm propagates by email containing malicious script.
Retrieves victim’s address book to expand infection. Estimated
50 million computers affected.

2000 Timofonica First virus targeting mobile phones (through SMS text
messaging)

2001 Code Red Virus propagates from 1°* to 20™ of month, attacks
whitehouse.gov web site from 20" to 28", rests until end of
month, and restarts at beginning of next month; resides only in
memory, making it undetected by file-searching antivirus
products

51

History of malware (cont.)

Year Name Characteristics

2001 Code Red I1I Like Code Red, but also installing code to permit remote access
to compromised machines

2001 Nimda Exploits known vulnerabilities; reported to have spread through
2 million machines in a 24-hour period

2003 Slammer worm Attacks SQL database servers; has unintended denial-of-service
impact due to massive amount of traffic it generates

2003 SoBig worm Propagates by sending itself to all email addresses it finds; can
fake From: field; can retrieve stored passwords

2004 MyDoom worm Mass-mailing worm with remote-access capability

2004 Bagle or Beagle Gathers email addresses to be used for subsequent spam

worm mailings; SoBig, MyDoom, and Bagle seemed to enter a war to

determine who could capture the most email addresses

2008 Rustock.C Spam bot and rootkit virus

2008 Conficker Virus believed to have infected as many as 10 million machines;
has gone through five major code versions

2010 Stuxnet Worm attacks SCADA automated processing systems; zero-day
attack

2011 Duqu Believed to be variant on Stuxnet

2013 CryptoLocker Ransomware Trojan that encrypts victim’s data storage and
demands a ransom for the decryption key

52

Harm from malicious code

¢ Harm to users and systems
¢ Sending email to user contacts
+ Deleting or encrypting files
¢ Modifying system information, such as the Windows registry
+ Stealing sensitive information, such as passwords
+ Attaching to critical system files
+ Hide copies of malware in multiple complementary locations
¢ Harm to the world
¢ Some malware has been known to infect millions of systems, growing at a geometric rate
+ Infected systems often become staging areas for new infections

53

Transmission and propagation

¢ Setup and installer program
¢ Attached file

¢ Document viruses

¢ Autorun

¢ Using non-malicious programs:
¢ appended viruses
& viruses that surround a program

¢ integrated viruses and replacements

54

Malware activation

¢ One-time execution (implanting)
¢ Boot sector viruses

¢ Memory-resident viruses

¢ Application files

¢ Code libraries

55

Virus effects

Virus Effect

How It Is Caused

Attach to executable
program

Modify file directory
Write to executable program file

Attach to data or
control file

Modify directory
Rewrite data
Append to data
Append data to self

Remain in memory

Intercept interrupt by modifying interrupt
handler address table

Load self in non-transient memory area

Infect disks

Intercept interrupt

Intercept operating system call (to format
disk, for example)

Modify system file
Modify ordinary executable program

Conceal self

Intercept system calls that would reveal
self and falsify result

Classify self as “hidden” file

Spread infection

Infect boot sector
Infect systems program
Infect ordinary program

Infect data ordinary program reads to
control its execution

Prevent deactivation

Activate before deactivating program and
block deactivation

Store copy to reinfect after deactivation

56

Countermeasures for users

¢ Use software acquired from reliable sources

¢ Test software in an isolated environment

¢ Only open attachments when you know them to be safe
¢ Treat every website as potentially harmful

¢ Create and maintain backups

57

Virus detection

+ Virus scanners look for signs of malicious code infection using signatures in
program files and memory

¢ Traditional virus scanners have trouble keeping up with new malware—
detect about 45% of infections

¢ Detection mechanisms

¢ Known string patterns in files or memory
¢ Execution patterns

¢ Storage patterns

58

Virus signatures

Attached
Virus Code

Original
Program

\

Recognizable
signature elements

59

/

IF (--)
JUMP

Original
Program

Separate
Virus
Module

Countermeasures for developers

¢ Modular code: Each code module should be
¢ Single-purpose

¢ Small

¢ Simple

¢ Independent

Encapsulation

Information hiding

Mutual suspicion

Confinement

R i (B R

Genetic diversity

60

Code testing

¢ Unit testing

¢ Integration testing
¢ Function testing

¢ Performance testing
¢ Acceptance testing
¢ Installation testing
¢ Regression testing

¢ Penetration testing

61

Design principles for security

*

*

*

*

Least privilege

Economy of mechanism
Open design

Complete mediation
Permission based
Separation of privilege
Least common mechanism

Ease of use

62

Other countermeasures

¢ Good

¢ Proofs of program correctness—where possible
¢ Defensive programming
¢ Design by contract
¢ Bad
¢ Penetrate-and-patch

¢ Security by obscurity

63

Summary

& Buffer overflow attacks can take advantage of the fact that code and data
are stored in the same memory in order to maliciously modify executing
programs

¢ Programs can have a number of other types of vulnerabilities, including off-
by-one errors, incomplete mediation, and race conditions

¢ Malware can have a variety of harmful effects depending on its
characteristics, including resource usage, infection vector, and payload

¢ Developers can use a variety of techniques for writing and testing code for
security

64

