Networks IV: SSL/TLS,
Certificates, and Heartbleed

CS 1660: Introduction to Computer
Systems Security

(recap) Linux Firewall Stateful example

Iptables block ping requests (ICMP echo-requests) from a specific IP after 3 pings in 20 seconds
* automatically reset after 20 seconds of no activity from that IP

1. Track each incoming ping (ICMP echo-request)
e iptables -A INPUT -p icmp --icmp-type echo-request -m recent --name ping_limit --set

2. Drop pings if the IP sent more than 3 in the past 20 seconds

e iptables -A INPUT -p icmp --icmp-type echo-request -m recent --name ping_limit --update --
seconds 20 --hitcount 4 -j REJECT (or DROP)

Iptables rule order is extremely important

 The firewall processes rules sequentially and stops at the first match:

* Once a packet matches a rule, the corresponding action is applied and no
further rules are evaluated.

SSL/TLS and Heartbleed

SSL/TLS Overview

Overview

Ny is it important to use HTTPS instead of HTTP?
nat is the difference between SSL and TLS?
nat are the goals of SSL and TLS?

SSL/TLS and Heartbleed

SSL and TLS

e Secure Socket Layer (SSL)

e Early protocol for securing web
connections

Developed in the 90s by team led
by Taher Elgamal at Netscape
* Transport Layer Security (TLS)
Evolution of SSL
Standardized by IETF
TLS 1.0 RFC 2246 (1999)
TLS 1.2 RFC 5246 (2008)
TLS 1.3 RFC 8446 (2018)

SSL/TLS and Heartbleed

United States Patent 9
Elgamal et al.

5,657,390
Aug. 12, 1997

(111 Patent Number:
(45) Date of Patent:

[54] SECURE SOCKET LAYER APPLICATION
PROGRAM APPARATUS AND METHOD

Primary Examiner—David C. Cain
Artomey, Agent, or Firm—limbach & Limbach LL.P.

[75) Investors: Taher Elgamal, Pslo Alto; Kipp E.B. [57] ABSTRACT

Hickman, Los Altas, both of Calif. A computer program product comprising: a comsputer use-
able medivm having computer resdable program code
means cmbodied therein for encrypting and decrypting
information wransferred over & network between a client
application program runping in & client computer and a
server application program running is 2 server computer, the
computer readable program code means in the computer

[73] Assignee: Netscape Communications
Corporation, Mountain View, Calif,

[21) Appl No.: 519,585
[22) Filed: Aug. 25, 1995

Patent issued in 1997

... method of encrypting and
decrypting information
transferred over a network
between a client ... and a
server ... | 22
Taher Elgamal

Image source: Alexander Klink via Wikipedir)a

https://commons.wikimedia.org/wiki/User:AlexanderKlink
https://en.wikipedia.org/wiki/File:Taher_Elgamal_it-sa_2010.jpg

Goals of SSL/TLS

* End-to End Confidentiality Optional client authentication

° Encrypt Communication between ® Ident|ty Of Client Optiona”y proved

client and server applications to server

Modular deployment

* Intermediate layer between
application and transport layers

 End-to-End Integrity

* Detect corruption of
communication between client

and server applications Handles encryption, integrity, and

_ e authentication on behalf of client
* Required server Authentication and server applications

* |dentity of server always proved to
client

SSL/TLS and Heartbleed

TLS Building Blocks

Confidentiality Integrity

Public-key
encryption
(e.g, RSA)

Public-key
digital signature
(e.g., RSA)

Authentication

Public-key
digital signature
(e.g., RSA)

Data
transmission

Symmetric
encryption
(e.g., AES)

Cryptographic
hashing
(e.g., SHA256)

SSL/TLS and Heartbleed

TLS Overview

 Handshake protocol
Client authenticates server
[Server authenticates client] Handshake
Client and server agree on protocol

crypto algorithms Web Web

Cller.1t and server establish Browser Server
session keys

 Record protocol Record

e Encrypt and add integrity protocol
protection before sending data

e Verify integrity and decrypt
after receiving data

SSL/TLS and Heartbleed

TLS Overview

Browser sends supported crypto Proposed crypto
algorithms (aka cipher suite)

Server picks strongest algorithms S

. elected crypto
It supports
Server sends certificate (chain) _
Web Certificate Web

Client verifies certificate (chain) Browser Server

Client and server agree on secret Verity
value by exchanging messages certificate Key exchange Derive

Derive keys

Secret value is used to derive Kevs
keys for symmetric encryption y Data transfer
and hash-based authentication of

subsequent data transfer
SSL/TLS and Heartbleed

Example of Cipher Suite

TLS RSA WITH AES 128 GCM SHA256
TLS defines the protocol

RSA specifies the key exchange algorithm

AES 128 GCM indicates the cipher being used to
encrypt the message stream

SHA256 identifies the hash algorithm used to
authenticate messages

SSL/TLS and Heartbleed

SSL/TLS analysis with Wireshark
https://tls12.xargs.org/
First part Cipher suite selection

SSL/TLS and Heartbleed

Key Exchange and Forward Secrecy

SSL/TLS and Heartbleed

Basic Key Exchange

Called RSA key exchange for
historical reasons = random()

Client generates random = Ep(1)
secret value R
Web

Client encrypts R with public
bl > Browser

key, PK, of server: C = Ep(R)
Client sends C to server

Server decrypts C with
private key, SK, of server:
R = Dg(C)

SSL/TLS and Heartbleed

Forward Secrecy (FS) or
Perfect Forward Secrecy (PFS)

General concept

e Compromise of public-key encryption private keys does not break
confidentiality of past encrypted messages

Forward secrecy in the context of TLS

« Compromise of server’s private key (associated with public key in
certificate) does not break confidentiality of past TLS sessions

TLS with basic key exchange (aka RSA key exchange) does not
provide forward secrecy

SSL/TLS and Heartbleed

Forward Secrecy

e Compromise of public-key encryption
private keys does not break confidentiality BisRellliuly
of past messages = Ep(R)

 TLS with basic key exchange does not
provide forward secrecy Web

« Attacker eavesdrop and stores all TLS Browser
communication

If server’s private key, SK, is compromised,
attacker recovers secret value R in key
exchange and derives from R encryption key
used in subsequent encrypted TLS

communication
SSL/TLS and Heartbleed

Diffie Hellman Key Exchange :_

Achieves forward secrecy v

Source: ACM

Secret value x Secret value y
Public value X Public value Y

Web Web
Browser Server

key K derived key K derived
fromxand Y from y and X

SSL/TLS and Heartbleed

https://www.acm.org/awards/2015-turing
https://www.acm.org/awards/2015-turing

Diffie Hellman Key Exchange

sourcal Achieves forward secrecy o

Client randomly generates and
derives public value X X = rand()

Server randomly generates and _ v =f
derives public value Y X =f(x) (y)

Client and server exchange Web Web
values X and Y Browser Server

Client derives key K from and Y
Server derives key K from and X

Att K=g(x,Y) < =g(y, X)
acker who captures X and Y
cannot reconstruct K < =g(x, f(y)) < =gly, f(x))

SSL/TLS and Heartbleed

https://www.acm.org/awards/2015-turing
https://www.acm.org/awards/2015-turing

Diffie Hellman
Key Exchange

Common paint

Secret colours

An intuitive example

The function is mixing colors

.] Public transport
We assume that is practically ><
impossible to separate e “(assume that
mixture separation
mixture is expensive)

Secret colours

Source: Common secret
upload.wikimedia.org/wikipedia/commons/4/46/Diffie—HeIIman_Key_E%éhéﬂ?gse?sr\]/% HEATIEEE

Modular Arithmetic

* mod function * Modular arithmetic has

the division of x by n arithmetic

e E.g., associative and
commutative

Several cryptographic
functions are based on
modular arithmetic

* E.g., RSA cryptosystem

x mod n has values between 0
andn — 1

 Examples

e l4mod13=1
e 29mod13=3
e 13mod13="
e« —1mod13 =12

SSL/TLS and Heartbleed

Power of a Power Property

e Standard arithmetic

© v = (@)= (@)

* Example: 223 = (2%)3=(2°)’=64
 Modular arithmetic

* avmod n = (a*)’mod n = (&) *mod n

SSL/TLS and Heartbleed

Discrete Logarithm Problem

* Modular power and logarithm
* y=a* modn
 Assume a and n are fixed public parameters

* Xxisthe logarithm of y in base a modulo n

 Modular power is easy
* There is an efficient algorithm to compute y given x

 Modular logarithm is hard
* No efficient algorithm is known to compute x given y

SSL/TLS and Heartbleed

DH Key Exchange Details

sourcal Achieves forward secrecy o

Public parameters: prime p and
generator g X = rand()

Client generates random x and X =g*mod p Y=g"modp
computes X = g*mod p

Server generates random y and Web Web
computes Y = g/ mod p Browser Server

Client sends X to server

Server sends Y to client K'=Y*mod p K'=X"mod p

Client and server compute

K=g¥modp

SSL/TLS and Heartbleed

https://www.acm.org/awards/2015-turing
https://www.acm.org/awards/2015-turing

Injection Attack

[/}

Web
Server

Klzg(xaA) Klzg(aaX) K2:g(a9 Y) K2:g(yaA)

An authentication problem the solution is with the use of certificates:
 Browser and server send signed X and Y respectively
* Requires each to know the public key of the other

* Optional for browser as it usually does not have certificate
SSL/TLS and Heartbleed

RESTART!

250403 p2 p 1)

Certificates and PKI

SSL/TLS and Heartbleed

TLS Goals

* Confidentiality
* |ntegrity
 Authentication

SSL/TLS and Heartbleed

TLS Goals

Authentication: verifying that the entity on the other end of the
connection is who they claim to be

* Technical aspects: crypto
e Social aspects

« How to distribute keys to entities

« What to do when things go wrong

[TLS: relies on Public Key Infrastructure (PKI)}
via certificates

The Challenge

yourbank.com

(...part of handshake...)

Kpub,bank.com

SSL/TLS and Heartbleed

Pick challenge x

The Challenge

(...part of handshake...)

yourbank.com

Kpub,bank.com

Enc(Kpub,bank.com, x)

SSL/TLS and Heartbleed

The Challenge

yourbank.com

(...part of handshake...)

Kpub,bank.com

Pick challenge x
Enc(Kpub,bank.com, x)

il x = Dec(Kpriv, x)
XI

What does this prove?

SSL/TLS and Heartbleed

Authentication challenges

* Challenge proves that the server at yourbank.com holds Kpriv

* Does NOT prove the server belongs to YourBank, the real-life
bank that holds your money

"But I'm visiting yourbank.com!"
DNS can be spoofed

Possible active network attacker (redirecting your IP traffic to malicious
server)

Domain names can expire and be re-registered...

SSL/TLS and Heartbleed

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution

* Hard to verify real-world identities

* Hard to scale to the whole Internet

Different protocols have different mechanisms

=>TLS (and others): Public Key Infrastructure (PKI) with
certificates

SSL/TLS and Heartbleed

PKIl: The main idea

Kpub,X
Public keys managed by Certificate Authorities (CAs) \ $$$ (usually)

l

* Everyone knows public key for some root CAs

* Pre-installed into browser/0OS CA

* |f X wants a public key, request from CA l

* CAvalidates X's identity, then signs X's public key s = Sign(K (K 1)
r priv,CA» \"\pub,Xs ---

* Generates certificate Cert = {K,,»x, Metadata, s}

* Client can verify K, , x from CA's signature:
Verify(K,,, ca Cert) => True/False

[=> Delegates trust for individual entity to a more trusted authority]

@® () DigiCert Assured ID Root CA

= DigiCert Assured ID Root CA
(f/’/‘/'///i('(//r e .
" Root certificate authority
=~ . < Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
e . e . .
@ This certificate is valid
Trust
Details

Subject Name
Country or Region US
Organization DigiCert Inc
Organizational Unit www.digicert.com
Common Name DigiCert Assured ID Root CA

Issuer Name
Country or Region US
Organization DigiCert Inc
Organizational Unit www.digicert.com
Common Name DigiCert Assured ID Root CA

Serial Number OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
Version 3
Signature Algorithm SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
Parameters None

Not Valid Before Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Not Valid After Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

Public Key Info
Algorithm RSA Encryption (1.2.840.113549.1.1.1)
Parameters None
Public Key 256 bytes: AD OE 15 CE E4 4380 5C ...
Exponent 65537
Key Size 2,048 bits
Key Usage Verify

Keychain Access

All tems Passwords Secure Notes My Certificates Keys

=
Certiffcate

Rt

Amazon Root CA 1
Root certificate authority

@ This certificate is valid

Name

o
=
=
=
o
=
=
=

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial
AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Certificates

Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

.| Amazon Root CA 2

s s

0 E1

=
=
=

v

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

What's in a certificate?

Public key of entity (eg. yourbank.com)

Common name: DNS name of server (yourbank.com)
Contact info for organization

Validity dates (start date, expire date)

URL of revocation center to check if key has been revoked

All of this is part of the data signed b)éthe CA

t
=> Critical to check all parts during TLS startup!

SSL/TLS and Heartbleed

Certificate Viewer: www.cs.brown.edu

General Details

Certificate Hierarchy

¥ USERTrust RSA Certification Authority
¥ InCommon RSA Server CA

www.cs.brown.edu

Certificate Fields

Issuer
¥ Validity
Not Before
Not After
Subject
¥ Subject Public Key Info
Subject Public Key Algorithm

Subject's Public Key

Field Value

CN = www.cs.brown.edu
O = Brown University
ST = Rhode Island
CcC=USs

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

* Private keys protected by most stringent security measures (software,
hardware, physical)

* Intermediate CAs: k,;, signed by root CA
* Sign certificates for general use (ie, regular websites)

 Doesn't require same protections as root

* General-use certificates: for a specific webserver

{ What happens if a root is compromised?

How

the hierarchy works

Ex. Server has certificate from Intermediate CA

Client

(TLS handshake)

B
(yourbank.com)

Kpub,Root

» B has:

/Client's workflow:

\

Checks metadata
Verify(Certg, Kyup,int)
Ve Ifify(certlnt; Kpub,Root)

{Certg, Cert,} * Kpriv,B
* CertB= { Kpub,B; Sign(Kpub,Bz Kpriv,Int)r }

=> To verify integrity, need to verify certificates back to
(trusted) root certificate

=> OK if verification passes and metadata correct: g

SSL/TLS and Heartbleed

A Not Secure | hitps://nd.Isacc.net

Your connection is not private

Attackers might be trying to steal your information from nd.lsacc.net (for example,
passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

Advanced Back to safety

SSL/TLS and Heartbleed

Most common TLS errors you might see

e Common name invalid
Self-signed
Certificate expired

When is it okay to click "proceed"? What happens if you do?

=> Might occur if webserver configured improperly, or if you're
setting up a system

SSL/TLS and Heartbleed

Rogue Certificates?

In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

The attacker created rogue certificates for popular domains like
google.com and yahoo.com

DigiNotar was distrusted by browsers and filed for bankruptcy

See the incident investigation report by European Agency for
Cybersecurity (ENISA)

SSL/TLS and Heartbleed

https://www.enisa.europa.eu/sites/default/files/all_files/Operation_Black_Tulip_v2.pdf

Another issue

In 2017, Google questioned the certificate issuance policies and
practices of Symantec

Google’s Chrome would start distrusting Symantec’s certificates unless
certain remediation steps were taken

See back and forth between Ryan Sleevi (Chromium team) and
Symantec

The matter was settled with DigiCert acquiring Symantec’s certificate
business

Certificate Transparency is an initiative that helps to mitigate this issue

SSL/TLS and Heartbleed

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://certificate.transparency.dev/

TLS decryption

What happens when an organization wants to view TLS traffic on
its network?

SSL/TLS and Heartbleed

Example: https://www.a10networks.com/products/thunder-ssili/

---Decrypt Zone:--;

Security Device

| S—— S—

Client A10 Thunder SSLi

®

Internet Remote Server

Encrypted traffic from the client is intercepted
by Thunder SSLi and decrypted.

Thunder SSLi sends the decrypted traffic to a
security device, which inspects it in clear-text.

The security device, after inspection, sends the
traffic back to Thunder SSLi, which intercepts
and re-encrypts it.

Thunder SSLi sends the re-encrypted traffic to
the server.

The server processes the request and sends
an encrypted response to Thunder SSLi.

Thunder SSLi decrypts the response traffic and
forwards it to the same security device for
inspection.

Thunder SSLi receives the traffic from the
security device, re-encrypts it and sends it to
the client.

https://www.a10networks.com/products/thunder-ssli/

View SSL Certificates

* Browser can show certificate chain

* View OS's certificate keystore
« MacOS: Keychain Access app or through Finder

* Linux tools: openssl
 E.g., inspect the brown.edu certificate

openssl s_client -connect cs.brown.edu:443

SSL/TLS and Heartbleed

YU
"’

SSL/TLS and Heartbleed

Heartbleed.com

* Heartbleed Bug is a in

* This weakness allows stealing the information

protected by the SSL/TLS encryption
software (e.g. HTTPS)

 Heartbleed bug allows to

read the memory of the vulnerable systems

— Sensitive information in the memory:
, : ,and in

V4
particular condition

SSL/TLS and Heartbleed

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY)WATO C LETTERS) . ser Meg wants these 6 letters: POTATO.
&

O
o
ser Meg wants these 6 letters: POTATO.
O
O
O

and Hea_rt

SERVER, ARE YOU STiLL. THERE?
IF S0, REPLY “BIRD“ (4 LETTERS).

User Meg wants
ese 4 letters: BIRD.

5

pse 4 letters: BIRD.

SERVER, ARE YOU STiLL. THERE?
IF S0, REPLY "HAT" (500 LETTERS),

ser Meg wants these 500 letters: HAT.

er Meg wants these 500 letters: HAT.

HAT. Lucas requests the "'missed come
ctions” page. Eve (adninistrator) wan
ts to set server’s master key to "148
350385347 . Isabel wants pages about "
snakes but not too long". User Karen
wants to change account password to "

Heartbleed disclosure

 4/7/14 - Public disclosure of the
Heartbleed bug
— Full Disclosure mailing list

managed by Fyodor
http://seclists.org/fulldisclosure/

* [FD] heartbleed OpenSSL bug CVE-
2014-0160

e Heartbleed.com

* Several websites and news agencies
started to publish information

SSL/TLS and Heartbleed

Different Vulnerability Disclosure

* Responsible disclosure (White hat)
— Discovered vulnerability first reported to vendor
— Disclosed to CERT later (usually 2 weeks)

* CERT = Computer Emergency Response Team

— Full disclosure to the public much later
* Quick disclosure (Grey hat)

— Discovered vulnerability immediately (or quickly) disclosed publically
* No disclosure (Black hat)

— Remains a “zero-day” attack until someone else finds it

SSL/TLS and Heartbleed

CVE-2014-0160)

cve.mitre.org

Common Vulnerabilities and Exposures (cve.mitre.org)

MI‘I:CRE is @ FFRDC — federally funded research and development
center
Captures specific vulnerabilities
— Standard name
— Cross-reference to CERT, etc.

Entry has three parts The CVE Identifier contains:
— UniqUegs CVE identifier number (e.¢,, CVE-1999-0067)

— Description : B : S T
_ Refereaies * Indication of “entry” or “candidate™ status

OVAL * Brief description of the security vulnerability or expostre

Aggggnilémefg rt])(_lql :thge * Applicable references (e.g., vulnerability reports and

advisories or OVAL-ID)

CVE-2014-0160 Learn more at National Vulnerability Database (NVD)
» Severity Rating » Fix Information « Vulnerable Software Versions « SCAP Mappings

Description

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which
allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

References

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.

e MISC:http://heartbleed.com/

e CONFIRM:http://qit.openssl.org/qitweb/?p=0penssl.qgit;a=commit;h=96db3023b881d7cdSf379b0c154650d6c108e9a3
e CONFIRM:http://www.openssl.org/news/secadv _20140407.txt

e CONFIRM:https://bugzilla.redhat.com/show bug.cqi?id=1084875

Date Entry Created

20131203 Disclaimer: The entry creation date may reflect when the CVE-ID was allocated or reserved, and does not
necessarily indicate when this vulnerability was discovered, shared with the affected vendor, publicly
disclosed, or updated in CVE.

https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-0160

SSL/TLS and Heartbleed 55

Sponsoredby /% ¥ .*V "~ NIST

&7 DHS National Cyber Security Division/US- CERT ‘ National Institute of
< Standards and Technology

atlonal Vulnehablllﬁ/ atabase

automating vulnerability managem ity measurement and compliance checking

* NVD is the U.S. government repository of standards-
based vulnerability .

* NVD includes:
— Original release date
— Impact: CVSS Severity and Metrics

— References to Advisories, Solutions, and Tools
* Links external to NVD

— Vulnerable software and versions
— Technical Detail: Vulnerability Type and CVE link

http://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2014-0162

CVSS = Common Vulnerability Scoring System

* 3values: Base, Temporal, Environmental

* Each ranges from 0 to 10

e Each value calculated from a formula based on criteria

Base
Metric Group

= Agresshectsr 4
\ Impact

f Confidentiafity \

/

s\: ess Complexit

o)\ lmpsst

~ 1ntegrity \l

4

4 \ /7 Availability

t Asthentieatiar : .
\& /o mpact

Temporal
Metric Group

! Sxploitadilivy :

: chmtdnator-bcvc#-:

Report _
_ Confidence)

SSL/TLS and Heartbleed

Environmental
Metric Group

Collateral Damage Confidentiality
Potential Requirement
Target (Integrity
Distribution ReQU rement

7 Avalabil 1y w
_ Requirement J

References to Advisories, Solutions, and Tools

* Bugzilla @

— A Web-based general-purpose bugtracker
* https://bugzilla.redhat.com/show_bug.cgi?id=1084875
* https://bugzilla.redhat.com/attachment.cgi?id=883475&action=diff

e Github EX=3

— A Web-based hosting service that uses Git revision control

* http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=96db9023b
881d7cd9f379b0c154650d6c108e9a3
* Here we can find that the bug was fixed on April 5

SSL/TLS and Heartbleed

--— a/fssl/tl_1lib.c
+++ b/ssl/tl_1lib.c

€@ -2588,16 +2588,20 €8 tlsl process heartbeat(SSL *s)
unsigned int payload;
unsigned int padding = 16; /* Use minimum padding =/

- /* Read type and payload length first */
- hbtype = =*p++;

- S Github Code

if (s->msg_callback)
s->msg_callback(0, s->version, TLS1l_ RT_ HEARTBEAT,
&s->s3->rrec.dataf0], s->s3->rrec.length,
s, s->msg_callback_arg);

/* Read type and payload length first */
if (1 + 2 #+ 16 > s->s3->rrec.length)
return 0; /* silently discard */
hbtype = =p++;
n2s(p, payload):;
if (1 + 2 %+ payload + 16 > s->s3->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */
Pl = p;

IR IR A R R T A

if (hbtype == TLS1 HB REQUEST)
{

unsigned char *buffer, *bp;

What is an SSL heartbeat?

* |[ETF RFC 6520 February 2012
* The Extension provides a new

protocol for SSL (TLS/DTLS) allowing the usage
of functionality without performing

d

SSL/TLS and Heartbleed

Qp Heartbeat - Normal usage

Server, send me S
this 4 letter word erver
if you are there: bird

Client "bird"

W Heartbeat - Malicious usage

Server, send me _ Server
this 500 letter bird. Server'
word ifyou are =~ Masterkeyis

, there: "bird" 31431498531054.
Client /—/ User Carol wants
to change /

password to
"password 123"..

>

Heartbeat sent to victim [k] is the number
SSLv3 record: :If by:ss |rt\“';|he request . payload_ is the
Eength e e 5 arbitrary number of bytes

— in the data that

\ has to be sent back
HeartbeatMessage:

HeartbeatMessage y)

Type \ Length Payload data

TLS1_HB_REQU ES'I\ 65535 bytes

HeartbeatMessage does not (3
check against the parent SSL3

Victim’s response
SSLv3 record:

field
Length .
allowing
65538 bytes —
HeartbeatMessage:

Type Length Payload data
TLS1_HB_RESPONSE 65535 bytes

Ml Heartbeat -> Heartbleed

is controlled by the ,and it's quite large at

sent by the attacker only has a payload of one byte, and
its IS a

will read the end of the received and creates a
Heart Message that reads from the victim main memory

*In you can find passwords or decrypted messages from other users.
* Sending another heartbeat message leaks another 64KB and so on...
* Nmap for Heartbleed: svn.nmap.org/nmap/scripts/ssl-heartbleed.nse

SSL/TLS and Heartbleed

Password leaks on Yahoo

) Untitled - Notepad - 8 X
File Edit Format View He!p
©7008: BC 9C 2D 61 S5F 32 36 30 35 26 2E 73 61 76 65 3D ..-a_2605&.save= ~
©710: 26 70 61 73 73 77 64 S5F 72 61 77 3D ©6 14 CE 6F &passwd_raw=...0
s RO A3 -DEER AR S5 CAE BT Ty 2R 20 BEC2E - -FS -3 B iuaiis S..y+ ..u=c

8730: 6A 66 6A 6D 31 68 39 6B 37 6D 36 30 26 2E 76 3D FfimlhO9k7m68&.v=
©74©: 30 26 2E 63 68 61 6C 6C 65 6E 67 65 3D 67 7A 37 ©&.challenge=gz7
©750: 6E 38 31 52 6C 52 4D 43 6A 49 47 4A 6F 71 62 33 n81R1IRMCjIGIogb3
e760: 75 69 72 61 2E 6D 6D 36 61 26 2E 79 786 6C 75 73 uira.mmb6a&.yplus
©e77e: 3D 26 2E 65 6D 61 69 6C 43 6F 64 65 3D 26 70 6B =&.emailCode=8&pk
e780: 67 3D 26 73 74 65 7© 69 64 3D 26 2E 65 76 3D 26 g=&stepid=&.ev=&
©790: 68 61 73 4D 73 67 72 3D 30 26 2E 63 68 6B 50 3D hasMsgr=0&.chkP=
©7a@: 59 26 2E 64 6F 6E 65 3D 68 74 74 70 25 33 41 25 Y&.done=httpXx3A%
6C 2E 79 61 68 piovismail . yahoo.

com&. pd=ym_verit3

DOX26cHE3DX26ivtX

3DX26sg%3D& . ws=1

& . cp=0&nr=08&pad=
6&aad=6&login=ag
nesaduboatengXx40
yahoo.com&passwd

/* Read type and payload length first */

hbtype = =*p++;
n2s(p, payload):; Th FIX
Pl = p; EE

if (s->msg_callback)
s->msg_callback(0, s->version, TLS1l RT HEARTBEAT,
&s->s3->rrec.data[0], s->s3->rrec.length,
s, s->msg_callback_arqg);

/* Read type and payload length first =/
if (1 + 2 + 16 > s->s3->rrec.length)
return 0; /* silently discard */
hbtype = =*p++;
n2s(p, payload):;
if (1 + 2 %+ payload + 16 > s->s3->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */

Pl = p;

A T

OpenSSL 1.0.1g implements a bounds check that discards:
« A HeartbeatMessage Packet smaller than with a payload of zero byte

A HeartbeatMessagePacket with a payload greater than SSL3
structure (s3->rrec)

SSL/TLS and Heartbleed

Why so dangerous?

e |t was on the wild for
two year in an open
source software

* Possibly two-thirds of
the server in the
world can use this
kind of software

SSL/TLS a

Web server developers: Market share of active sites

80% =
I_I B Apache
E TC A F T B Microsoft
60% - Su.n
’ B nginx
B Google
B Other
40%

20%

0% — —

o o o 007 oo 2 o0 o® o 0 o O\ g
& ’L(’L"LO'L(\’LQ’L\{L\'L’L’L\’L(\’L Y
P e e\ ey el ot To% e el Wt g g
Developer January 2014 Percent February 2014 Percent Change
Apache 08,129,017 54.50% 04,741,928 52.68% -1.81
nainx 21,548,550 11.97% 24,206,737 13.46% 1.49
Microsoft 20,901,626 11.61% 21,196,966 11.79% 0.18
Google 15,386,518 8.54% 15,245,912 8.48% -0.07

Class Discussion on Heartbleed

If you are Heartbleed vulnerable:

* |s it possible to sniff https traffic?

 And what about the former https traffic?

* |s it possible to spoof the server certificate?

* Which kind of protection is possible to
perform for the final users to protect?

SSL/TLS and Heartbleed

After Heartbleed...

* Open source seems to be just

more secure than
proprietary software

a multi-million dollar project funded

by major IT companies

— www.coreinfrastructure.org

— From 2020 moved in:
openssf.org

Previously OpenSSL received about
$2,000 per year in donations

https://threatpost.com/openssl-operating-with-
renewed-vision-two-years-after-heartbleed/116567/

SSL/TLS and Heartbleed 68

What We Have Learned

*Goals of the SSL/TLS protocol

*Overview of the SSL protocol

*Perfect forward secrecy

*SSL certificates, chain of trust, and revocation

Heartbleed attack

SSL/TLS and Heartbleed

