https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 9: Web Security

Co-Instructor: Nikos Triandopoulos
February 25, 2025

A7
N

0

BROWN

https://brown-csci1660.github.io/

CS1660: Announcements

¢ Course updates
¢ Project 2 is going out today
¢ Homework 1 is due soon (Thu, Feb 27)

¢ Where we are

/0 Part I: Crypto
o Part ll: Web
¢ Part lll: OS
o Part IV: Network

¢ Part V: Extras

Today

¢ Web security
¢ Web Security Models
¢ Browser Security

¢ Web Technologies and Protocols

Crypto recap through
Discrepancies...

Discrepancies

& Security Vs. cryptography

¢ Guarantees Vs. threat model

¢ Confidentiality Vs. integrity

¢ Prevention Vs. detection

¢ Old Vs. modern cryptography

¢ Perfect Vs. computational security
¢ Modelled Vs. practical attacker

¢ Crypto Vs. non-crypto security

¢ Truly Vs. pseudo random

¢ Secret Vs. public

4

R GEIS R, NI YN

4

Theory Vs. practice

Ideal model Vs. implementation
Open Vs. closed design

Symmetric Vs. asymmetric crypto
Block Vs. all-length designs

Data Vs. user authentication

Set-up Vs. real-world assumptions
Good hygiene Vs. arbitrary practices

Random Vs. non-random

The Dyn DDoS attack

It’s unfair! — | had no class but couldn’t watch my Netflix series!

On October 21, 2016, a large-scale cyber was launched
+ it affected globally the entire Internet but particularly hit U.S. east coast

¢ during most of the day, no one could access a long list of major Internet
platforms and services, e.g., Netflix, CNN, Airbnb, PayPal, Zillow, ...

o this was a Distributed Denial-of-Service (DDoS) attack

Architecture of a DDoS Attack

Lo 5 ———

W S] A L/Hgg\J L "ﬂ |

. . ‘ 4 - —~ ___— / —
Zonb e] [Zon'b e] [Zon'hle] [Zonb Zon'b e Zontue Zon'b e] Zorrble

Domain Name Service (DNS) protocol

Resolving domain names to IP addresses

¢ when you type a URL in your Web browser, its IP address must be found
o larger websites have multiple IP responses for redundancy to distributing load

+ at the heart of Internet addressing is a protocol called DNS

¢ a database translating Internet names to addresses

query: Please resolve netflix.com

|
answer: P is 52.22.118.132

DNS: Hierarchical search

Search is performed recursively and hierarchically across different type of DNS resolvers
¢ Untrusted recursive DNS servers: query other resolvers and cache recent results

¢ Trusted TLD (top-level domain) servers: control TLD zones such as .com, .org, .net, etc.

DNS entries: subset of cached queried entries locally cached IP addresses
<netflix.com, 52.22.118.132> (or information of other resolvers) (at Web browser and OS)

netflix.com

1y —
U e

— it

52.22.118.132
(or “non-existent”)

primary secondary
5

DNS: A critical asset to attack...

What main security properties must be preserved in such an important service?

¢ all properties in CIA triad are relevant!
¢ resolving domain names to IP addresses is a service that

¢ must critically be available during all times — availability
¢ must critically be trustworthy — integrity

¢ must also protect database entries that are not queried — confidentiality

10

DNS: A critical asset to attack... (cont.)

signed

digest
source

malicious

server

11

answer
+
proof + signed digest

“is answer correct?”

verification

availability / confidentiality

Dyn DDoS attack
) Dyn

Please resolve aWa2j3netflix.com

>
aWa2j3netflix.com
is a non-existent domain

aWa2j3netflix.com; do you?

Attack:
¢ from a compromised machine ask for domain names that do not exist

¢ query is forwarded to fewer primary Dyn servers, i.e., defeating benefits of distribution

¢ use a botnet to ask A LOT of such queries to bring down the Dyn DNS service!

12

Dyn DDoS attack: Exploit Internet of Things (loT)

Please resolve aWa2j3netflix.com

>
aWa2j3netflix.com
is a non-existent domain

aWa2j3netflix.com; do you?

Create a botnet:
¢ compromise easy targets: loT “thin” devices, e.g., printers, cameras, home routers, ...
¢ how? find a vulnerability on these devices...

¢ all such devices used an OS with a static, hard-wired, thus known, admin password...!

13

DNSSEC & NSEC

Security extensions of DNS protocol to protect integrity of DNS data
e correct resolution, origin authentication, authenticated denial of existence
+ specifications made by Internet Engineering Task Force (IETF) via RFCs
¢ an RFC (request for comments) is a suggested solution under peer review
+ challenges: backward-compatible, simplicity, confidentiality, who signs

¢ DNSSEC/NSEC: extension that provide proofs of existence/denial of existence

14

DNSSEC & NSEC: core idea

signed

digest
source

DNSSEC protocol: each DNS entry is pre-signed by primary name server

b d
g

server
answer
DB -

proof + signed digest

“is answer correct?”

verification

NSEC protocol:
 domain names are lexicographically ordered and then each pair of neighboring
existing domain names is pre-signed by the primary name server

* non-existing names, e.g., aWa2j3netflix.com are proved by providing this pair
“containing” missed query name, e.g., <awa.com, awb.com>

15

DNSSEC: example

Each entry <domain name, IP address> in the database is individually signed by a primary

DNS server and uploaded to secondary DNS servers in signed form
signing key

/sl

please resolve e.com

>

e.com resolves to IP, .o

Zone names

- = verification

a.com, IP, .o, prOOf' Ce &l Pe = <e'(:oml":’e.com>

Zone names 8 = —

& a.com, 1P, om 8e.com, Pecom ey dpnatine
z.com, IP, com using known

& c.com, IPc com public key

e.com, IP. com
& z.com, IP; .om

16

NSEC: example

Additionally, pairs of consecutive (in alphabetical order) domain names are individually

signed by a primary DNS server and uploaded to secondary DNS servers in signed form
signing key

231' o~

Zone names

please resolve b.com

>
domain name b.com doesn’t exist

- proof: o, &, p; = <a.com, c.com> Verification
: (0]
c.com } - verify signature
e.com } 02 @ using known
O3 @ public key
- } & check “miss”
a.com

17

exploit the “leak-domain-names”

NSEC: Vulnera b|||ty vulnerability of NSEC to learn the

domain names of an entire zone

Proofs of non-existing names leak information about other unknown domain names

signing key
please resolve b.com
' : >
domain name b.com doesn’t exist
ZCRe najes proof: o; &, p; = <a.com, c.com> Verification
a.com g,

c.com . - verify signature
leaked information .

e R .
} O3 @ public key

z.com user asked for b.com but g check “miss”
a.com O4 @ also learned for a.com & c.com

18

ask for non-existing names

Zone enumeration attack to get all possible proofs

An attacker can simply act as a “querier” to learn target organization’s network structure!

signing key

resolve bS.com, d#.com, e%.com

>

none exists

proof: o, 8, p; = <a.com, c.com>

Zone names Zone names
proof: o, , P2 = <c.com, e.com>
a.com :}_ o) a.com

c.com c.com
o, & proof: o; @, p3 = <e.com, z.com>
e.com } e.com
O3
LE0 (;@ This attack may expose private device names (e.g., loT devices eLor
2,010 4 & that can be toehold for other attacks!) or reveal other private s

DNS data that many registries have legal obligations to protect

19

NSEC3: NSEC in the hash domain

please resolve b.com

<

>
b.com is a non-existent domain

proof: o3 @ , P3 = <dded5,zrit5>

Zone names
a.com albb5 23ced”] ©
hash h 23ced sortl albb5s 1 @
c.com ;
e.com Zrits dde45 } asked for b.com but
> com ddeas S } > & learned h(e.com) & h(z.com)
23ced

h(b.com) = ntwo4
e.g., h is SHA-256

NSECS5: A secure solution

please resolve b.com

<
>

b.com is a non-existent domain
proof: 03@ , P3 = <dde45,zrit5>

Zone names h’(x), RSA-signature of f(b.com)

a.com ~albb5 23ced }01 @

c.com hashl h 23ced SO a1bb5 }

= 2rit5 dde45 } askecfl for b.com kzut

o ddeds JritS } > & learned h’(e.com) & h’(z.com)
23ced

h’(b.com) = ntwo4

h: as in NSEC3

f:.”message transformation” hash h’(X) = h(RSA'Slgn(% f(X)))

= = = =
4 e B <

=
=

%«.& e SR ‘. e ~ ‘:x. el ~ ‘:x. el ~ ‘:x. el ~ ‘:x. T Z N, T ‘:x. = ‘:, ;
e e = e i e et e e s

Web applications

Browser w'
responses 1 Web

Server

Client Network

Server

What are the dangers?

23

Threat models The main vector of attack is via

the content of a website
Web attacker

Browser w»
responses Web
\g&' Server

Network
Compromised client, attacker

or malware DoS attacks,
or malware

24

Network attacks

e 0 ®] -

Source Receiver Source Receiver
Standard Flow Block (DoS)

Source Receiver Source Receiver

Wiretapping (sniffing) Attacker in the Middle (passive)
‘_ = = .-‘")‘ ‘

Source i Receiver Source

Attacker in the Middle (active) 25 Creation (spoofing)

Receiver

Web Attacker Capabilities

¢ Attacker controls a malicious website

¢ website might look professional, legitimate, etc.
+ attacker can get users to visit website (how?)

¢ A benign website is compromised by attacker
+ attacker inserts malicious content into website

¢ attacker steals sensitive data from website

¢ Attacker does not have direct access to user's machine

26

Potential Damage

& An attacker gets you to visit a malicious website...

¢ Can they perform actions on other websites impersonating you?

¢ Can they run evil code on your OS?

+ ldeally, none of these exploits are possible ...

%

Attack Vectors

¢ Web browser (focus of this lecture)

¢ Renders web content (HTML pages, scripts)

¢ Responsible for confining web content

¢ Note: Browser implementations dictate what websites can do
¢ Web applications

¢ Server code (PHP, Ruby, Python, ...)

¢ Client-side code (JavaScript)

¢ Many potential bugs (e.g., see Project 2)

28

Browser Security: Sandbox

Goal: protect local computer from web attacker
¢ Safely execute code on a website, without the code
& accessing your files, tampering with your network, or accessing other sites
High stakes
¢ S40K bounty for Google Chrome
¢ www.google.com/about/appsecurity/chrome-rewards/
We won't address attacks that break the sandbox
¢ But they happen check the CVE list

& https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sandbox

¢ https://support.apple.com/en-us/HT213635

29

https://chromereleases.googleblog.com/2022/02/stable-channel-update-for-desktop_14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0609
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sandbox
https://support.apple.com/en-us/HT213635

Domains, HTML, HTTP

URL and FQDN

URL: Uniform Resource Locator FQDN: Fully Qualified Domain Name

https://cs.brown.edu/about/contacts.html [Host name].[Domain].[TLD].[Root]
+ a protocol + Two or more labels, separated by dots

¢ e.g. https ¢ e.g., cs.brown.edu

+ a FQDN ¢ Root name server

¢ a “” at the end of the FQDN

¢ e.g. cs.brown.edu
¢ Top-level domain (TLD)

¢ a path and file name _
generic (gTLD): .com, .org, .net,

+ e.g. /about/contacts.html # country-code (ccTLD): .cq, .it,, .gr ...

31

Domain

hierarchy

]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com
]A xxx.com

HIHHH
HIHHH
HIHHH
HIHHH
HIHHH
HIHHH
HHHHH
HIHHH
HIHHH
HHHHH
HIHHH o
HIHHH R
HIHHH
HIHHH
HIHHH I
HIHHH -
HIHHH ~ .

google.com

IA google.com 66.249.91.104

IA xxx.google.com #iH##H#HH##
IA xxx.google.com #iH#HiHH##
IA xxx.google.com #i##HiHH##
IA xxx.google.com #i#HiHH##
IA xxx.google.com #iH#HiH#H##
IA xxx.google.com ####iHHiH
IA xxx.google.com ###i i
IA xxx.google.com ####i i

IA xxx.google.com #i#itHHHiH
IA xxx.google.com #i#itHHiH

IA xxx.google.com ####i i IA xxx.microsoft.com #####HiH##
IA xxx.google.com ###itHHHiH IA xxx.microsoft.com ####i i
IA xxx.google.com ####itHHHiH A xxx.microsoft.com ####it i

microsoft.com

IAmicrosoft.com 207.46.232.182

A xxx.microsoft.com ###iHitHiHi#H
IA xxx.microsoft.com ###iHitHiH##
A xxx.microsoft.com ###iHitHiHi#
A xxx.microsoft.com ###iHitHiH##
A xxx.microsoft.com ###iHitHiH##
IA xxx.microsoft.com ###iHitHiHi#
IA xxx.microsoft.com #i#iHitHiHi##
A xxx.microsoft.com ###iHitHiHi##

A xxx.microsoft.com #i#iHitHH#H
A xxx.microsoft.com #i#iHiHiH#H
A xxx.microsoft.com #if#iHiH#H#H
A xxx.microsoft.com #iiHiH#H#H

sta nford.éd

)A stanford.edu 171.67.216.18

IA xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu 171.67 ###.###
A xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu(171.67 ###.###
IA xxx.stanford.edu [L71.67 ###.###
IA xxx.stanford.edu | 71.67 ###.###
IA xxx.stanford.edu 171.67 ###.###
IA xxx.stanford.edu 71.67 ###.###
IA xxx.stanford.edu §71.67 ###.###

resource records

32

A xxx.edu #H#H##EHIEH
A xxx.edu #H#H#HIEHIH
A xxx.edu #H###EHIEH
A xxx.edu #H#H##EHIEH
A xxx.edu #H###HEHIEH
A xxxedu i
A xxx.edu #H#H##EHIEH
A xxx.edu #H##H#EHIEH
A xxx.edu #H###EHIEH
A xxx.edu I
A xxx.edu ##H#H#H#IHIH
A xxx.edu #H#H#H#EHIEH
Sofooocedu s
A xxx.edu #HH#H#HIEH

IA brown.edu 128.148.128.180

A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
IA xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###
A xxx.brown.edu 128.148. ### ###

brown.edu

cs.brown.edu

cs.brown.edu 128.148.32.110
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###
WXX.BTOWT]. €00 128 148327

HTML

Hypertext markup language (HTML)

+ allows linking to other pages (href) <html>
= : <head>
¢ supports embedding of images, <title>Google</title>
scripts, other pages (script, iframe) </head>
_ = <body>
& user input accepted in forms <p>Welcome to my page.</p>
<script>alert(“Hello world”);
</script>
<iframe src=“http://example.com”>
</iframe
</body>
</html>

33

HTTP (Hypertext Transport Protocol)

Communication protocol between client and server

Browser

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

Client

HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS) ..
Content-Type: text/html
<html>
<head>
<title>Google</title>
</head>
<body>..</body>

</html> —~

Web
Server

Server

What’s in a request (or response)?

URL (domain, path) Variables (name-value pairs)

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

<<
Browser HTTP/1.1 200 OK Web

Server: Apache/2.2.3 (CentOS) .. Server
Content-Type: text/html
<html>
<head>
<title>Google</title> Resource
</head>
<body>..</body>
</html>

35

Variables

Key-value pairs obtained from user input into forms & submitted to server
¢ Submit variables in HTTP via GET or POST
¢ GET request: variables within HTTP URL

¢ e.g., http://www.google.com/search?q=cs166&num=02
¢ POST request: variables within HTTP body

¢ POST/HTTP/1.1

¢ Host: example.com

¢ Content-Type: application/x-www-form-urlencoded

¢ Content-Length: 18

¢ month=5&year=2024

36

Semantics: GET Vs. POST

GET

+ Request target resource
+ Read-only method

+ Submitted variables may specify
target resource and/or its format

POST

+ Request processing of target resource
o Read/write/create method

+ Submitted variables may specify how
resource is processed

¢ e.g., content of resource to be
created, updated, or executed

37

GET Vs. POST

GET POST
Browser history v X
Browser bookmarking v X
Browser caching v X
Server logs v X
Reloading page immediate warning
Variable values Restricted arbitrary

38

Web-application security

Client-side controls

¢ Web security problems arises because clients can submit arbitrary input
¢ What about using client-side controls to check the input?

¢ Which kind of controls?

40

Client-side controls (cont.)

A standard application may rely on client-side controls
¢ They restrict user input in two general ways

¢ Transmitting data via the client component using a mechanism that should
prevent the user from modifying that data

¢ Implementing measures on the client side

¢ In this threat model

¢ Server does not trust the Client

41

Bypassing client-side controls

+ In general, a security flaw because it is easy to bypass
¢ The user

+ has a full control over the client and the data it submits

¢ can bypass any controls that are client-side and not replicated on the server
¢ Why these controls are still useful?

¢ For load balancing or usability

¢ Often we can suppose that the vast majority of users are honest

42

Transmitting data via the client

¢ A common developer bad habit is passing data to the client in a form that the
end user cannot directly see or modify

¢ Why is it so common?
+ It removes or reduces the amount of data to store server side per-session

+ In multi-server applications, it removes the need to synchronize the session data
among different servers

¢ The use of third-party components on the server may be difficult or impossible to
integrate

¢ Transmitting data via the client is often the easy solution

¢ But unfortunately it is not secure

43

Common mechanisms

¢ HTML Hidden fields

¢ A field flagged hidden is not displayed on-screen
o HTTP Cookies

¢ Not displayed on-screen, and the user cannot modify directly
¢ Referrer Header

¢ An optional field in the http request that it indicates the URL of the page from
which the current request originated

¢ |If you use the proper tool you can tamper the data on the client-side

44

Web client tool

¢ Web inspection tool:
¢ Firefox or Chrome web developer:

+ powerful tools that allow you to edit HTML, CSS and view the coding behind any
website: CSS, HTML, DOM and JavaScript

¢ Web Proxy:

¢ Burp, OWASP ZAP, etc.
+ Allow to modify GET or POST requests

45

HTTP proxy IE OWQASP

Burp suite

- : ZAP
An intercepting Proxy:

¢ inspect and modify traffic between your browser and the target application

¢ Burp Intruder, OWASP ZAP, etc.

o O

Request

- . . Request
Browser
— Response Response

46

=
.1»' S i .1»' .1»' = .1»' .1»' .1»; .1»; .1»' .1»' = .1»' = .1»' = .1»' = .1»' = .1»' = ;g
e "“"“‘%"2‘3*&' S "“"“‘%"2‘3*&' S e

s g s o s o o 2 o 2 o

=
A
Selmonro

’—ﬁ-ﬁ&k—%' R e e R e o e g e S g Ay M g o

In BROWSER we trust...

¢ Most of our trust on web security relies on information stored in the Browser

¢ a Browser should be updated since Bugs in the browser implementation can lead to
various attacks

e e.g, https://us-cert.cisa.gov/ncas/current-activity/2023/02/14/mozilla-releases-
security-updates-firefox-110-and-firefox-esr

¢ Add-ons too are dangerous
+ Hacking Team flash exploits - goo.gl/syVwiD
e github.com/greatsuspender/thegreatsuspender/issues/1263

¢ Executing a browser with low privileges helps

48

Browser Security: Same-Origin Policy (SOP)

Very simple idea: “Content from different origins should be isolated”
¢ Website origin defined over tuple (protocol, domain, port)
Very difficult to execute in practice...

¢ Messy number of cases to worry about...

HTML elements, Navigating Links, Browser cookies, JavaScript capabilities, iframes, ...

etc.

¢ Browsers didn’t always get this correct...

49

Browser Security: Same-Origin Policy (SPO) (cont.)

Goal: Protect and isolate web content from other web content

+ Content from different origins should be isolated, e.g., mal.com should not
interact with bank.com in unexpected ways

¢ What about cs.brown.edu vs brown.edu or mail.google.com vs
drive.google.com?

¢ Lots of subtleties

50

SOP example: http://store.company.com/dir/page.html

URL

http://store.company.com/dir2/other.html

http://store.company.com/dir/inner/another.html

https://store.company.com/page.html

http://store.company.com:81/dir/page.html

http://news.company.com/dir/page.html

51

Outcome

Same origin

Same origin

Failure

Failure

Failure

(protocol, domain, port)

Reason

Only the path differs

Only the path differs

Different protocol

Different port (http:// is port 80 by default)

Different host

