Introduction to Computer Networks Security CS 1660: Introduction to Computer Systems Security

Networking's Role in Cybersecurity

- **Remote Communication**: Networks enable distant interactions.
- **Data Exchange Infrastructure**: Network devices allow the creation of an efficient digital domain.
- Cyber Attack Vectors: Networks are common targets needing solid defenses.
- There is a dual nature of networks as both enablers and potential risks.
- So, what is a network?

A very easy... network Source Destination

Network Communication

- Communication in modern networks is characterized by the following fundamental principles
 - Packet routing (aka switching)
 - Stack of layers (virtual layers)
 - Encapsulation

Virtual Circuit vs Packet Switching

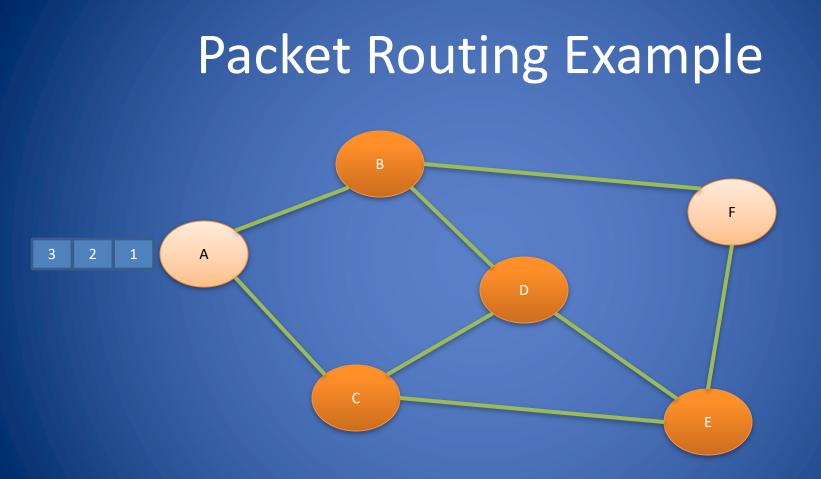
Virtual Circuit

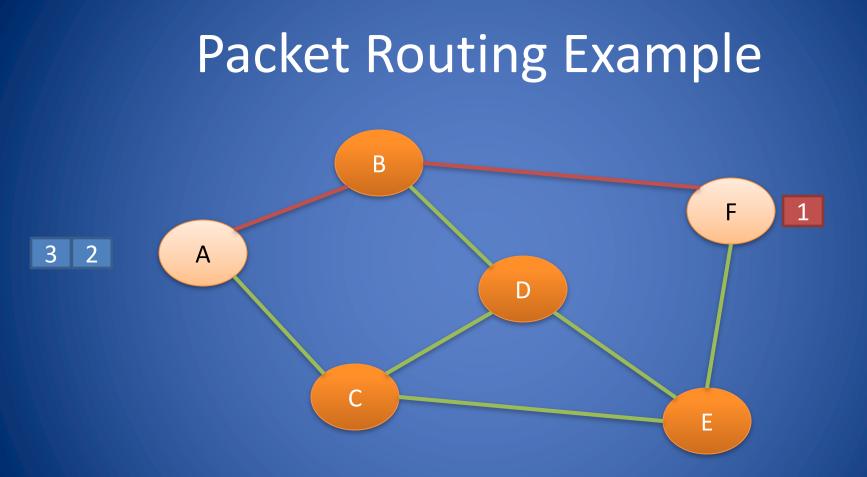
- Legacy phone network
- Single route through sequence of hardware devices established when two nodes start communication
- Data sent along route
- Route maintained until communication ends

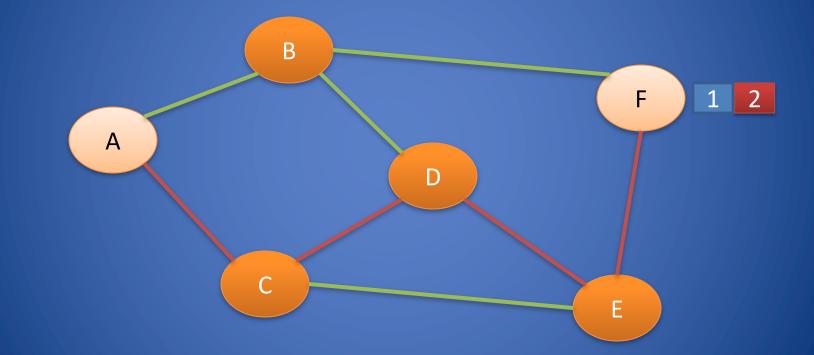
Packet switching

- Internet
- Data split into packets
- Packets transported independently through network
- Each packet handled on a best efforts basis
- Packets may follow different routes

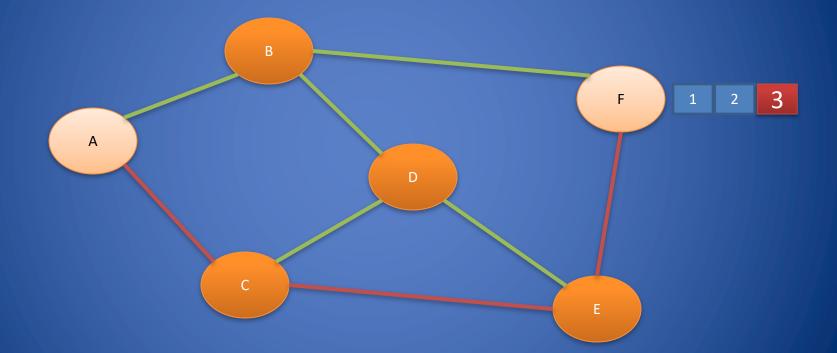
Virtual Circuit

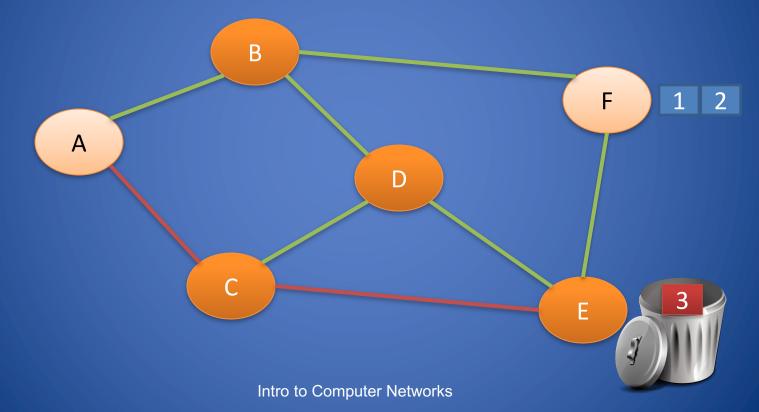

Analogic rotatory phone lines:



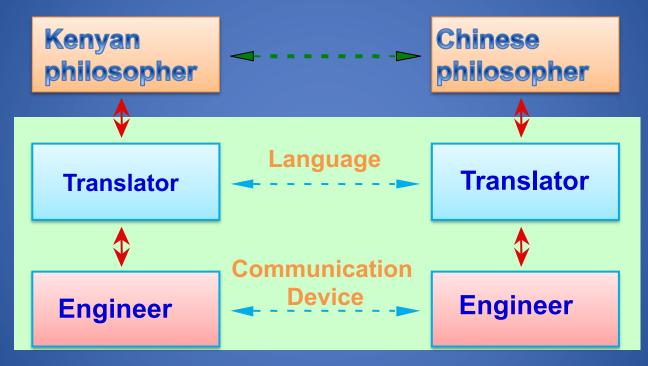

Packet Routing

- Data split into packets
- Each packet is
 - Transported independently through network
 - Handled on a best efforts basis by each device
- Packets may
 - Follow different routes between the same endpoints
 - Be dropped by an intermediate device and never delivered

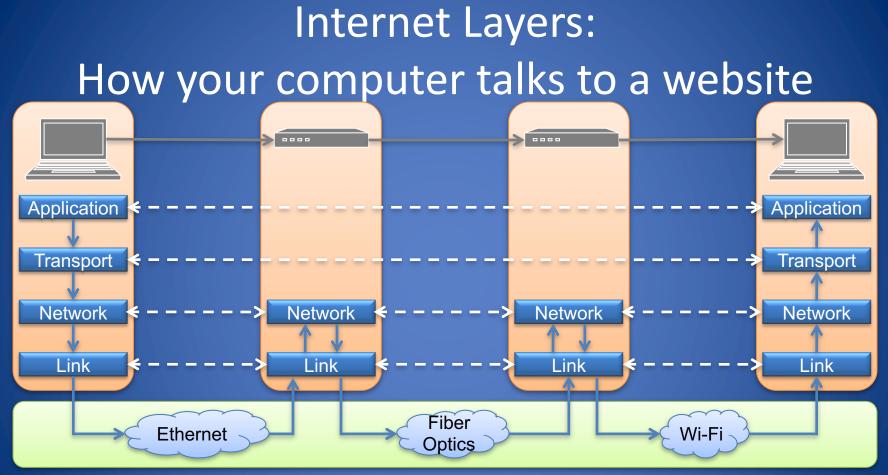



Packet Routing Example

Packet Routing Example



Packet Routing Example (Problem)


Protocol Layers and Encapsulation

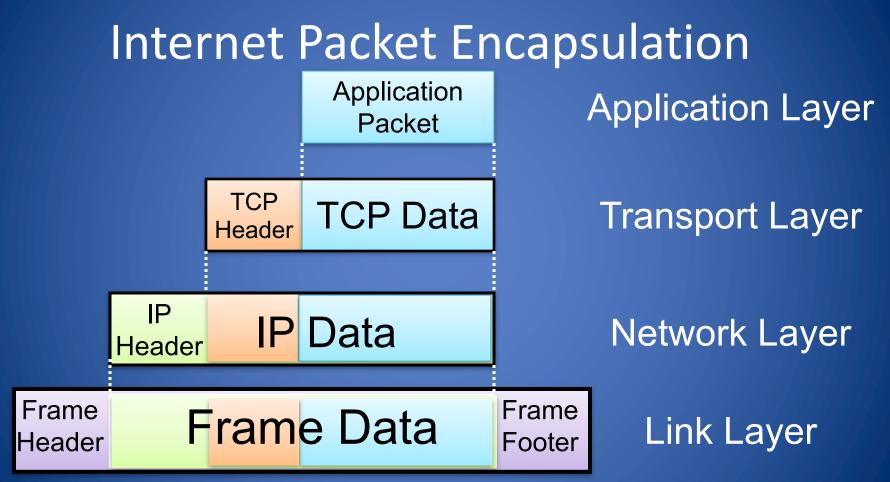
Two philosophers example

Stack of Layers

- Network communication models use a stack of layers
 - Higher layers use services of lower layers
 - Physical channel at the bottommost layer
- A network device implements several layers
- A communication channel between two devices is established for each layer
 - Actual channel at the bottom layer
 - Virtual channel at higher layers

Physical Layer

Intro to Computer Networks


Encapsulation

- A packet typically consists of
 - Control information: header and footer
 - Data: payload
- A protocol P uses the services of another protocol

Q through encapsulation

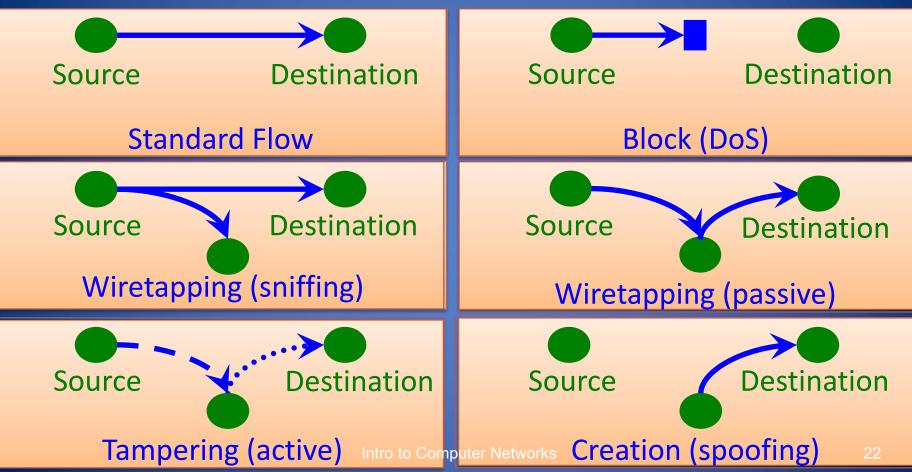
- A packet p of P is encapsulated into a packet q of Q
- The payload of q is p
- The control information of q is derived from that of p

Header	Header	Payload	Footer	Footer

Internet Packet Encapsulation

Link f	rame	
	IP pa	cket
		TCP or UDP packet
		Application packet

Link header IP header
TCP or UDP header
Application packet
Link footer


Clicker Question (1)

You are browsing the beautiful CS1660 website. Which layer best describes the HTTP communication between you web browser and the CS1660 web server? A. Application C. Transport B. Link D. Network

Clicker Question(1) - Answer

You are browsing the beautiful CS166 website. Which layer best describes the HTTP communication between you web browser and the CS166 web server? A. Application C. Transport B. Link D. Network

Network Attacks

Map of the Internet, 2021 (via BGP) OPTE project

23

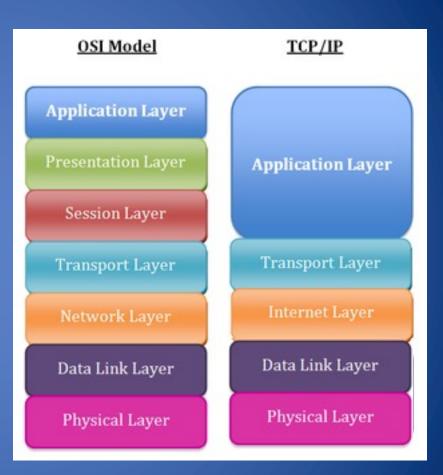
Color Chart North America (ARIN) Europe (RIPE) Asia Pacific (APNIC) Latin America (LANIC) Africa (AFRINIC) Backbone US Military

How do we make sense of this?

Network abstractions model how we build protocols and applications:

- How data gets encapsulated
- What services are provided at each later (and what they rely on from other layers)

Network Layers


Networks are complex. Abstractions help us deal with them and build extensible, scalable systems

Some problems:

- Different media: Wifi, Ethernet, Cellular, Bluetooth, ..
- No single managing entity: many ISPs, organizations, countries with different goals/policies
- Need to support different types of applications, which use network in different ways

The OSI Model

- The OSI (Open System Interconnect) Reference Model is a network model consisting of seven layers
- Created in 1983, OSI is promoted by the International Standard Organization (ISO)

Layers: the classical picture

- <u>Application</u> what users see, *e.g.*, web page via HTTP
- <u>Presentation</u> crypto, conversion between representations
- <u>Session</u> can tie together multiple streams (*e.g.*, audio & video)
- <u>Transport</u> abstractions for getting data data between applications
- <u>Network</u> consider *packets* moving across <u>entire network</u>
- <u>Link layer</u> consider *frames* moving between individual *links*
- <u>Physical</u> moving bits across a link

A high-level picture

7. Application	Provides applications to users (eg. HTTP, SSH,) Application-defined messages	
4. Transport	Abstracts methods use to send data Examples: TCP, UDP Defines: port numbers;	
3. Network	Provides way to get a packet to <u>any other node on the Interne</u> Protocols: IP (IPv4, IPv6) Defines: I <mark>P address</mark> (eg. 1.2.3.4)	<u>t</u>
2. Link	Protocols for sending data on individual links Examples: Wifi, Ethernet, Bluetooth, Defines: MAC address (more on this later)	
1. Physical	Service: move bits to other node across link (Electrical engineering problem) Intro to Computer Networks	29

Let's see networks in action...

Wireshark

- Wireshark is a packet sniffer, protocol analyzer used for network troubleshooting, analysis and protocol development
- Wireshark allows for capturing of raw data from the network and for analysis
- Freely available on www.wireshark.org

•											
		<u>a</u> 💿			२ 🔶 🔿						main toolbar
	pply a	display filter<೫	8/>						ter tooll		Expression +
No.		Time	Source		Destination		Protocol	Length	Info	Jai	
	1024	114.084415	10.18.205.20	2	13.226.162	.80	ТСР	66	59354 → 443	[ACK] S	eq=79 Ack=79 Win=2
	1025	114.846011	10.18.205.20	2	104.18.3.1	.73	ICMP	98	Echo (ping)	request	id=0xdb41, seq=0
<	1026	114.854961	104.18.3.173		10.18.205.	202	ICMP	98	Echo (ping)	reply	id=0xdb41, seq=0
	1027	114.876848	10.18.205.20	2	142.250.18	0.67	TLSv1	105	Application	Data	
	1028	114.881968	142.250.180.	67	10.18.205.	202	ТСР	66	443 → 5/488	hack	et list pane
	1029	115.062304	142.250.180.	67	10.18.205.	202	TLSv1	105	Application	Data	
		115.062422	10.18.205.20	_	142.250.18	0.67	ТСР				eq=359 Ack=505 Win
		115.851198	10.18.205.20		104.18.3.1		ICMP				id=0xdb41, seq=1
L		115.860957	104.18.3.173		10.18.205.		ICMP		Echo (ping)		id=0xdb41, seq=1
	1033	116.028027	10.18.205.20	2	104.16.249	.249	TLSv1	122	Application	Data	
> F	rame	1025: 98 bytes	s on wire (78	4 bits),	98 bytes c	aptured	(784 bits)	on int	erface 0		
> E	thern	net II, Src: Ap	ople_50:a3:83	(f0:18:	98:50:a3:83), Dst: l	_annerEl_21	l:bc:c9	(00:90:0b:2	1:bc:c9))
\sim I	Intern	et Protocol Ve	ersion 4, Src	: 10.18.	205.202, Ds	t: 104.18	3.3.173		-		
	010	0 = Versi	on: 4					•	🗲 pack	et de	tails pane
		. 0101 = Heade		-					•		•
2		ferentiated Se	rvices Field:	0x00 (I	DSCP: CS0, E	ECN: Not-	ECT)				
	Tot	al Length: 84									
000	00 00	90 0b 21 bc	c9 f0 18 98	50 a3 8	3 08 00 45	00	! • • • • • • • • • • • • • • • • • • •	۰·E·			
001) 54 76 e4 00			2 cd ca 68		· · · @ · · ·) · ·		6 pac	kat h	ytes pane
002		ad 08 00 22			8 a5 be 00		• "··A ··`H			NCI N	yies palle
003 004		8 ab 08 09 0a 5 17 18 19 1a			1 12 13 14 1 22 23 24		· · · · · · · · · · · · · · · · · · ·				
004		5 27 28 29 2a			1 32 33 34)*+,/01				
006		5 37				67	, , , , .,				
	2	Ethorpot (cth) 14 but		← S	tatus ba	Southa		S 2 Diamin	wed. 020700 (100		
Ethernet (eth),14 bytes									oped: 0 (0.0%) Profile: Default		

Demo: wireshark

- Make an HTTP request, examine packets
- Show stack of layers, point out IP addresses

- CERN The first website:
 - http://info.cern.ch/hypertext/WWW/TheProject.html
 - https://info.cern.ch/hypertext/WWW/TheProject.html

Anatomy of a packet

> Frame 100: 452 bytes on wire (3616 bits), 452 bytes captured (3616 bits) on interface en0, id 0

> Ethernet II, Src: Apple_15:8e:b8 (f0:18:98:15:8e:b8), Dst: Cisco_c5:2c:a3 (f8:c2:88:c5:2c:a3)

> Internet Protocol Version 4, Src: 172.17.48.252, Dst: 128.148.32.12

> Transmission Control Protocol, Src Port: 52725, Dst Port: 80, Seq: 1, Ack: 1, Len: 386

> Hypertext Transfer Protocol

0000	f8 c2	88	c5	2c	a3	f0	18	98	15	8e	b8	08	00	45	02	····,··· ·····E·
0010	01 b6	00	00	40	00	40	06	bb	92	ac	11	30	fc	80	94	····@·@· ····Ø····
0020	20 Oc	cd	f5	00	50	f1	b0	89	57	ae	46	0c	d9	80	18	• • • • P • • • W • F • • • •
0030	08 02	b2	50	00	00	01	01	08	0a	36	da	1f	03	69	с9	••••P•••••6•••i•
0040	85 22	47	45	54	20	2f	20	48	54	54	50	2f	31	2e	31	·"GET / HTTP/1.1
0050																Host: cs.brown
0060	2e 65	64	75	0d	0a	55	73	65	72	2d	41	67	65	6e	74	.edu∙Us er-Agent
0070	3a 20	4d	6f	7a	69	6c	6c	61	2f	35	2e	30	20	28	4d	: Mozill a/5.0 (M

Key point: packet header info tells network how to handle packet

BREAK!

Cryptography III

Physical & Link layer

Network Interfaces

Network <u>interface</u>: connects a computer or other

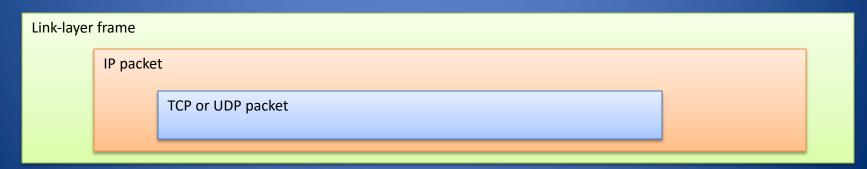
device to a network

- Ethernet card, RJ-45 plug and cables
- WiFi adapter
- Bluetooth
- Cellular

. . .

MAC Addresses

- All interfaces have a MAC address
 - 48-bit number in hex (eg. 00-1A-92-D4-BF-86)
- Used to identify devices on a *local* network (eg. single house or building)
- First three bytes: assigned to manufacturers
 - E.g., 00-1A-A1 Cisco, 00-1B-11 D-Link , 00-0a-95 Apple
- Next three bytes: assigned per device, by manufacturer
 => Pre-programmed at factory, but can be changed by OS


More on this later...

Network Layer

Internet Protocol (IP) Goals

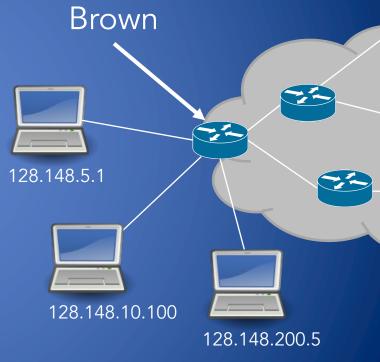
- Addressing: Provide a unique identifier to every host on the Internet
- Routing: Unified abstraction to route between any two hosts, regardless of the type of networks involved (Ethernet, Wifi, Cellular, ...)

The Internet = > A network of networks!

128.148.16.7

IP Version 4: Each address is a 32-bit number:

128.148.16.7


1000000 10010100 00010000 00000111

<u>Notation</u>

- Write each byte ("octet") as a decimal number 0-255
- Called "dotted decimal" or "dotted quad" notation

32 bits => 2³² possible addresses... problem?

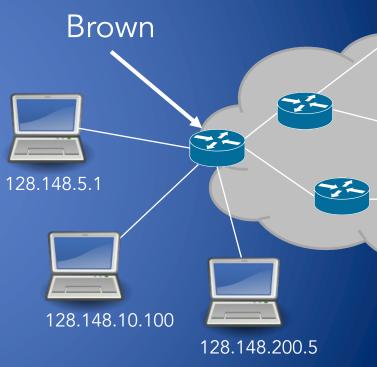
A network can designate IP addresses for its own hosts within its address range

An IP address identifies...

- Who a host is: A unique number
- Where it is on the Internet
- Networks are allocated ranges of IPs by global authority (ICANN)
 - Further subdivided by regions, ISPs, ...
 - US-biased, especially in early internet
- Some IPs have special uses (eg. 127.0.0.1)

eg. Brown owns 128.148.xxx.xxx, 138.16.xxx.xxx

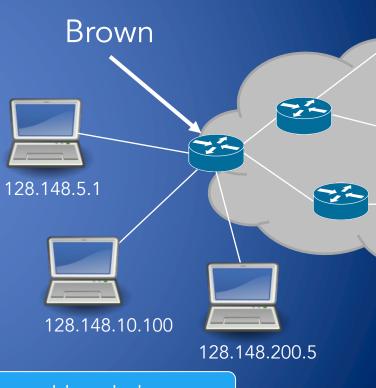
*ICANN (Internet Corporation for Assigned Names and Numbers)


Brown

128.148.16.7

A network can designate IP addresses for its own hosts within its address range

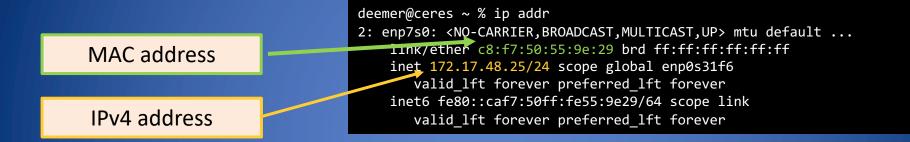
How? Every address has two parts:


- <u>Network part</u>: identifies the network (eg. "Brown") to the Internet
- <u>Host part</u>: identifies individual hosts within Brown

A network can designate IP addresses for its own hosts within its address range

How? Every address has two parts:

- <u>Network part</u>: identifies the network (eg. "Brown") to the Internet
- <u>Host part</u>: identifies individual hosts within Brown


Why? Routers need to check which network an address belongs to

Wi-Fi	TCP/IP DNS	WINS 802.1X Proxies	Hardware
Configure IPv4:	Using DHCP	0	
IPv4 Address:	172.17.48.252		Renew DHCP Lease
Subnet Mask:	255.255.255.0	DHCP Client ID:	
Router:	172.17.48.1		(If required)
Configure IPv6:	Automatically	0	
Router:			
IPv6 Address:			
Prefix Length:			
			Cancel OK

?

Viewing Network Configuration

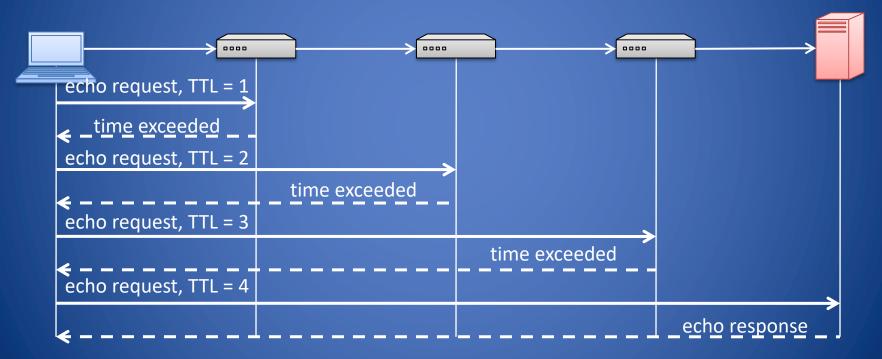
deemer@ceres ~ % ip route
127.0.0.0/8 via 127.0.0.1 dev lo
172.17.48.0/24 dev enp7s0 proto kernel
default via 172.17.48.1 dev eth0 src 172.17.44.22

Gateway IP address

4/4/24

Brown's IP Space

- Brown separates the network connecting dorms and the network connecting offices and academic buildings
 - Class B network 138.16.0.0/16 (64K addresses)
 - Class B network 128.148.0.0/16 (64K addresses)
- CS department
 - Several class C (/24) networks, each with 254 addresses
 - Tstaff supported machines: 128.148.31.0/24, 128.148.33.0/24, 128.148.38.0/24
 - Unsupported machines:128.148.36.0/24

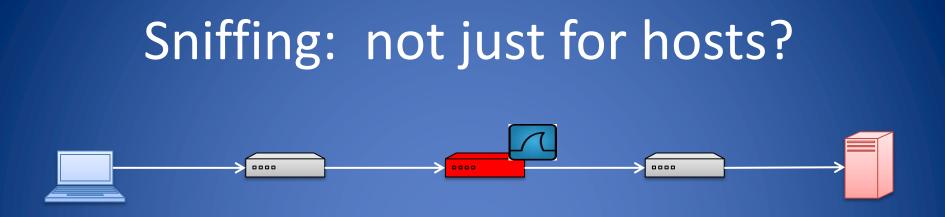

A Simple Internet Protocol

- Internet Control Message Protocol (ICMP)
 - Used for network testing and debugging
 - Network-layer protocol: simple messages about IP forwarding/routing
- Tools based on ICMP
 - Ping: send a message to an IP, get a response back
 - Traceroute: sends series ICMP packets with increasing TTL value to discover routes

TTL: Time to Live

- When TTL reaches 0, router may send back an error
 "ICMP TTL exceeded" message
- If it does, we can identify a path used by a packet!
 => Traceroute takes advantage of this

Traceroute


Traceroute example

[deemer@Warsprite ~]\$ traceroute -q 1 google.com
traceroute to google.com (142.251.40.174), 30 hops max, 60 byte packets

- 1 router1-nac.linode.com (207.99.1.13) 0.621 ms
- 2 if-0-1-0-0.gw1.cjj1.us.linode.com (173.255.239.26) 0.499 ms
- 3 72.14.222.136 (72.14.222.136) 0.949 ms
- 4 72.14.222.136 (72.14.222.136) 0.919 ms
- 5 108.170.248.65 (108.170.248.65) 1.842 ms
- 6 lga25s81-in-f14.1e100.net (142.251.40.174) 1.812 ms

Traceroute example

[deemer@Warsprite ~]\$ traceroute -q 1 amazon.co.uk traceroute to amazon.co.uk (178.236.7.220), 30 hops max, 60 byte packets router2-nac.linode.com (207.99.1.14) 0.577 ms 1 if-11-1-0-1-0.gw2.cjj1.us.linode.com (173.255.239.16) 0.461 ms 2 ix-et-2-0-2-0.tcore3.njy-newark.as6453.net (66.198.70.104) 1.025 ms 3 be3294.ccr41.jfk02.atlas.cogentco.com (154.54.47.217) 2.938 ms 4 be2317.ccr41.lon13.atlas.cogentco.com (154.54.30.186) 69.725 ms 5 be2350.rcr21.b023101-0.lon13.atlas.cogentco.com (130.117.51.138) 69.947 ms 6 a100-row.demarc.cogentco.com (149.11.173.122) 71.639 ms 7 150.222.15.28 (150.222.15.28) 78.217 ms 8 150.222.15.21 (150.222.15.21) 84.383 ms 9 10 150.222.15.4 (150.222.15.4) 74.529 ms 11 30 178.236.14.162 (178.236.14.162) 83.659 ms

- Any network device that sees packets could be an eavesdropper
- This is why we encrypt traffic in transit!

What we Have Learned

- Packet routing
- Internet protocol layers

 Encapsulation
- Link layer
 - MAC addresses
 - Operation of switches
 - MAC access control

- Network layer
 - IP addresses
 - Operation of routers
- Practicing ping and traceroute utilities
- Industry of Anonymity

Practicing Ping and Traceroute

- Linux/Unix/Macos
 - ifconfig
 - ping www.brown.edu
 - traceroute www.brown.edu
- Windows
 - ipconfig
 - tracert www.brown.edu

Practice with Wireshark

- Checking a connection

 Ping 127.0.0.1 (localhost)
 Ping <your-ip-address> (ifconfig)
 Ping www.brown.edu
- Traceroute www.brown.edu
- Let's see in Wireshark

How do we move packets between networks?

Components of an IP

IPv4 Address: 172.17.48.252

Subnet Mask: 255.255.255.0

Router: 172.17.48.1

172.17.48.252

Addr:172.17.48.25210101100000100010011000011111100Mask:255.255.255.011111111111111111111100000000

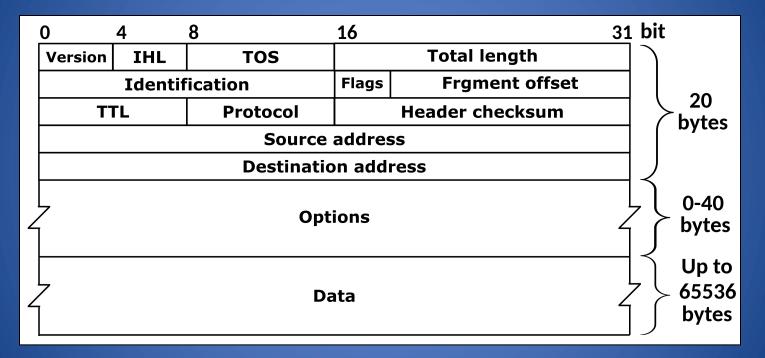
Key point: networks can be of different sizes! =>The "subnet mask" defines what part of is the network part

Common Prefix Sizes

Prefix	IPs	Number of hosts	Note
1.2.3.0/24	1.2.3.*	2^8 = 256	Common for local networks (LANs) Old term: "Class C"
1.2.0.0/16	1.2.*.*	2^16 = 65536	Old term: "Class B" Large (or older) organizations
1.0.0.0/8	1.*.*.*	2^24 = ~16M	Old term: "Class A"
1.2.3.100/30	1.2.3.1-1.2.3.3	4	A smaller prefix

Special/private IP ranges

Prefix	Note
127.0.0.0/8	Localhost (for networks on same system), usually 127.0.0.1
192.168.0.0/16	Private: often used for home networks
10.0.0/8	Private: often used for larger organizations (eg. Brown)
172.16.0.0/12	Private: larger space for organizations, systems (eg. Docker)

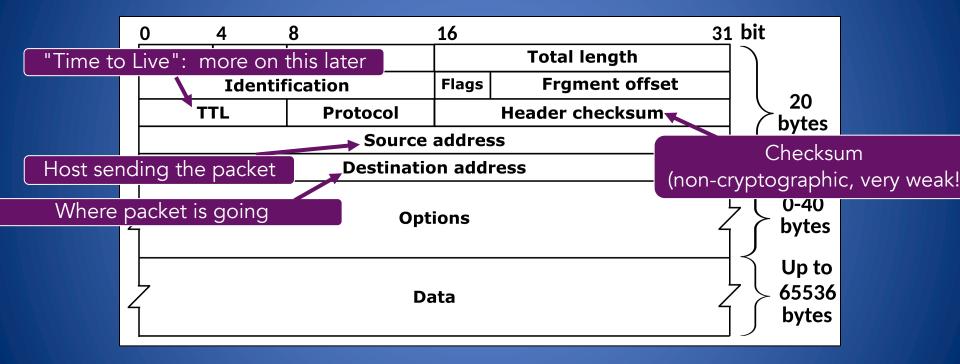

- Used for LANs, private networks not publicly routable on the global internet RFC 1918
- More on this later

IP Address Space and ICANN

- Hosts on the internet must have unique IP addresses
- Internet Corporation for Assigned Names and Numbers
 - International nonprofit organization
 - Incorporated in the US
 - Allocates IP address space
 - Manages top-level domains
- Historical bias in favor of US corporations and nonprofit organizations

003/8	May 94	General Electric
009/8	Aug 92	IBM
012/8	Jun 95	AT&T Bell Labs
013/8	Sep 91	Xerox Corporation
015/8	Jul 94	Hewlett-Packard
017/8	Jul 92	Apple Computer
018/8	Jan 94	MIT
019/8	May 95	Ford Motor
040/8	Jun 94	Eli Lily
043/8	Jan 91	Japan Inet
044/8	Jul 92	Amateur Radio Digital
047/8	Jan 91	Bell-Northern Res.
048/8	May 95	Prudential Securities
054/8	Mar 92	Merck
055/8	Apr 95	Boeing
056/8	Jun 94	U.S. Postal Service

The IPv4 Header

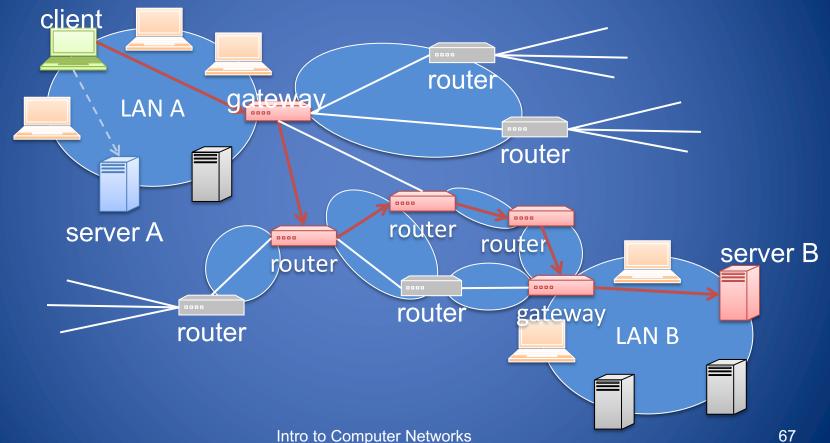

Defined by RFC 791

RFC (Request for Comment): defines network standard

IP Routing

- A router connects two or more networks
 - Maintains tables to forward packets to the appropriate network
 - Forwarding decisions based solely on the destination address
 - Hosts (regular systems) can be routers too!
- Routing table
 - Maps ranges of addresses to LANs or other gateway routers

The IPv4 Header


Example routing table

deemer@ceres ~ % ip route
127.0.0.0/8 via 127.0.0.1 dev lo
172.17.48.0/24 dev enp7s0 proto kernel
default via 172.17.48.1 dev eth0 src 172.17.44.22

 "Default": where to send packets when they go to a network you don't know about

• Also known as "next hop"

Routing Examples

Clicker Question (2)

Which layer best describes the operation of a router?

A. Application B. Link C. Transport D. Network

Clicker Question(2) - Answer

Which layer best describes the operation of a router?

A. Application B. Link C. Transport D. Network