
Cloud Provider Security

CS 1660: Introduction to
Computer Systems Security

1

"The Cloud"

2

• Various features to outsource components of applications

• Faster/cheaper to build apps, easy to sync across devices ...

• In modern times, many different types of services, depending on what
you want to outsource

"Types" of services
User-facing applications

§ Gmail, Dropbox, OneDrive, ...

3

"Types" of services
User-facing applications

§ Gmail, Dropbox, OneDrive, ...

Developer APIs
§ Google Cloud Platform, Microsoft Azure, Amazon Web services, ...
§ Various types of services, depending on what developer needs
§ Eg. Block storage, databases, whole VMs, cloud functions, ...

4

=> {Container, VM, Database, Function call, …} as-a-service

5

Cloud Threats
Provider has some service/security guarantees, but not universal…

Need to consider:
• Security at the edge: defenses against outside attackers?
• Any guarantees on data protection?

§ Lost data
§ Corrupt data
§ Stolen data

6

7

Example: AWS (Amazon Web Services) “Shared responsibility model”

=> Different levels of security or data protection,
depending on what you pay for!

Threats from Other Cloud Tenants
Other cloud customers ("tenants") might..
§ Steal your data
§ Tamper with your data

Vulnerabilities with sharing of hardware,
software, and network resources among
clients

=> “Side channel attacks”

8

How is data secured in the cloud?

9

Cloud security fundamentals
• Encryption-at-rest:

• Encryption-in-transit:

• Encryption-in-use:

Definitions by Google, but ideas are common to all providers:
https://cloud.google.com/compute/confidential-vm/docs/about-cvm 10

https://cloud.google.com/compute/confidential-vm/docs/about-cvm

Cloud security fundamentals
• Encryption-at-rest: data is encrypted when it is stored on disk

• Encryption-in-transit: data is encrypted when it is moving between
two points

• Encryption-in-use: data is encrypted while it's being processed

Definitions by Google, but ideas are common to all providers:
https://cloud.google.com/compute/confidential-vm/docs/about-cvm

11

https://cloud.google.com/compute/confidential-vm/docs/about-cvm

Cloud security fundamentals
• Encryption-at-rest: data is encrypted when it is stored on disk
 => Most cloud providers do this

• Encryption-in-transit: data is encrypted when it is moving between
two points

 => Most cloud providers do this

• Encryption-in-use: data is encrypted while it's being processed
 => Requires trusted execution environment
 (harder, specialized applications only)

Definitions by Google, but ideas are common to all providers:
https://cloud.google.com/compute/confidential-vm/docs/about-cvm

12

https://cloud.google.com/compute/confidential-vm/docs/about-cvm

Example: cloud storage

13

from google.cloud import storage

def write_read(bucket_name, blob_name):
 """Write and read a blob from GCS using file-like IO"""

 storage_client = storage.Client()
 bucket = storage_client.bucket(bucket_name)
 blob = bucket.blob(blob_name)

 with blob.open("w") as f:
 f.write("Hello world")

 with blob.open("r") as f:
 print(f.read())

Points of encryption
Encryption at rest: Uses some form of file and/or encryption (whole disk,
database object, both, ...)

Who holds the keys?

14

Who holds the keys?
Can be configurable by customer:

• Default keys: "single" key used by provider, transparent to user

• Customer-managed keys: provider has key generation service, customer
decides which objects are encrypted with keys

• Client-side keys: client application generates the keys, encrypts data
before sending to provider

 => End to end encryption
15

Example: Default method

16

API
Endpoint StorageClient

put(m)

Example: Default method

17

API
Endpoint StorageClient

put(m) TLS Session
m

Example: Default method

18

API
Endpoint StorageClient

put(m) TLS Session

Encryption in transit: all provider <-> client messages protected in
transit, usually with TLS

=> Confidentiality: prevents eavesdropping
(Also: integrity, authentication… will discuss later)

m

Example: Default method

19

API
Endpoint StorageClient

put(m) TLS Session

=> Provider uses its own key to encrypt data on disk

Provider key: k

db.store(m)

c = Enc(k, m)
write(c)

Encryption-at-rest: Persistent storage is encrypted

=> Problems?

m

Example: Default method

20

API
Endpoint StorageClient

put(m) TLS Session

Problems?
=> Message is decrypted at some point while provider is storing it
(may be small, but nonzero)
=> Provider controls what key is used, how many systems/customers it’s used on…

=> Provider uses its own key to encrypt data on disk

Provider key: k

db.store(m)

c = Enc(k, m)
write(c)

m

Example: Customer-managed keys (one way)

21

API
Endpoint StorageClient

put(mi,ki) TLS Session

Why might a customer want this?

db.store(mi,ki)

c = Enc(ki, mi)
write(c)

mi, ki

Main idea
• Client tells provider what keys to use
• Provider might generate keys for client (via another API) or

even store them on its behalf

Example: Customer-managed keys (one way)

22

API
Endpoint StorageClient

put(mi,ki) TLS Session

Client/Customer gets to decide key usage, even if provider does the encryption
=> Customer decides what data gets encrypted with what key (eg. per user, project)
=> Client can revoke or delete individual keys

db.store(mi,ki)

c = Enc(ki, mi)
write(c)

mi, ki

Main idea
• Client tells provider what keys to use
• Provider might generate keys for client (via another API) or

even store them on its behalf

Example: Customer-managed keys (one way)

23

API
Endpoint StorageClient

put(mi,ki) TLS Session

Client/Customer gets to decide key usage, even if provider does the encryption
=> Customer decides what data gets encrypted with what key (eg. per user, project)
=> Client can revoke or delete individual keys

db.store(mi,ki)

c = Enc(ki, mi)
write(c)

mi, ki

Main idea
• Client tells provider what keys to use
• Provider might generate keys for client (via another API) or

even store them on its behalf

24

Problems?

25

Leaked slide on NSA/GCHQ MUSCULAR program (2013): large-scale interception of (then)
unencrypted cloud provider traffic Links: 1 2 3

https://www.theguardian.com/technology/2013/oct/30/google-reports-nsa-secretly-intercepts-data-links
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://en.wikipedia.org/wiki/MUSCULAR

Another way: End to end encryption (client-side keys)

26

API
Endpoint StorageClient

c = Enc(m, k)
put(c) TLS Session

db.store(c)

write(c)

c

Main idea: Client does encryption on its own, key is not known to
provider

Another way: End to end encryption (client-side keys)

27

API
Endpoint StorageClient

c = Enc(m, k)
put(c) TLS Session

=> If cloud provider is breached, data is not recoverable
=> Client responsible for crypto, key management (hard!)

db.store(c)

write(c)

c

Main idea: Client does encryption on its own, key is not known to
provider

End-to-end encryption

28

• Even if cloud provider is breached, data is not recoverable

• Client is more complex
§ Needs to manage keys

§ Cryptographic operations must happen client-side

§ => You’ll do this in Dropbox! (we give you the crypto library, though!)

End-to-end encryption

29

• Even if cloud provider is breached, data is not recoverable

• Client is more complex
§ Needs to manage keys

§ Cryptographic operations must happen client-side

§ => You’ll do this in Dropbox! (we give you the crypto library, though!)

End-to-end encryption is starting to become more common in cloud systems, and user-facing
applications
=> In general, cloud providers are critical for modern business => incentive to provide security
features to meet customer demand (corporate policy, compliance with regulations, etc.)

30
Link

https://about.fb.com/news/2023/12/default-end-to-end-encryption-on-messenger/

31

Example: iMessage privacy terms

https://www.apple.com/legal/privacy/data/en/messages/

32
Compliance in
Google Cloud

https://cloud.google.com/security/compliance/offerings
https://cloud.google.com/security/compliance/offerings

33

Extra info: Cloud Storage Integrity

34

May be useful for CS1620/CS2660 component of Dropbox (but not required)

Cloud Storage Integrity
● Alice outsources her files to Bob (cloud storage provider)
● How can Alice check whether a file downloaded from Bob has

not been corrupted?

35

Did the Cloud Corrupt my Files?
● Alice outsources her files to Bob (cloud storage provider)
● How can Alice check whether a file subsequently downloaded

from Bob has not been corrupted?
● Basic solution

○ Alice computes and keeps cryptographic hashes of her files
○ Upon download of a file from Bob, Alice checks the hash of

the downloaded file against the stored hash
● Alice detects any change in the file with overwhelming

probability

36

More Efficient Integrity Verification
● Storing n hashes is more efficient than storing n files for Alice
● However, the asymptotic space requirement for Alice is still

O(n)
● Improved solution

○ Using a cryptographic hash function, Alice builds a Merkle
tree over her files, where leaves store hashes of files and
internal nodes store hierarchically computed hash values

○ Alice keeps the root hash of the Merkle tree (and discards
the rest of the tree)

○ The asymptotic space requirement for Alice is now only
O(1) 37

What is a Merkle Tree

38

● Binary tree built on top of a set of items X1, X2,
… using a cryptographic hash function, h

● Each node stores a hash value
● Leaf: hash of item

○ xi = h(Xi)
● Internal node: hash of pair of

values at children
○ a = h(x1 x2)
○ b = h(x3 x4)
○ c = h(a b)
○ ...

a b e f

c d

g

leaves

internal
nodes

root

X2X1 X4X3 X5 X7X6 X8items

x1 x2 x3 x4 x5 x6 x7 x8

Hash Tree (Merkle): building

39

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4
H

Authentication structure
Basis: authenticated tree root

data must be ordered
H is a Hash function

V2,2 = H(m3) V2,3 = H(m4)

V1,1 = H [(V2,2) || (V2,3)]

Basis = V0,0 = H [(V1,0) || (V1,1)]
Data hash

v0,0

Hash Tree (Merkle): test

40

A user would verify data authenticity of

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

v0,0

Authenticated answer is made by: m3, V2,3, V1,0

And from the Basis signed by a CA.

The user can verify if m3 is authentic:

m3HV2,2 =

H

V2,3V2,2 ||H ()V1,1 =

V1,1V1,0 ||H ()

If Basis == V0,0 then m3 is authentic

m3

V0,0 =

Integrity Property of a Merkle Tree

41

Given a Merkle tree, it is unfeasible to
modify any nonempty subset of items
without modifying also the root hash

● Why?
a bʹ e f

cʹ d

gʹ

root

X2X1 X4Y3 X5 X7X6 X8

x1 x2 y3 x4 x5 x6 x7 x8

Integrity Property of a Merkle Tree

42

Given a Merkle tree, it is unfeasible to
modify any nonempty subset of items
without modifying also the root hash
● Follows from collision resistance

of the hash function
● Suppose we modify an item,

say X3, into Y3
● The nodes from the leaf to the

root change value, else we
found
a collision of the hash function
somewhere along this path

a bʹ e f

cʹ d

gʹ

root

X2X1 X4Y3 X5 X7X6 X8

x1 x2 y3 x4 x5 x6 x7 x8

Proof of an Item in a Merkle Tree

43

● A Merkle tree provides a proof
that an item is in the set:
○ sequence of hash values and

L/R (left/right) indicators
● To build the proof for an item:

○ Start at the leaf and go up to
the root

○ At each node, pick hash value
and side of sibling node

● Example: proof for X3
○ (x4, R), (a , L), (d, R)

a b e f

c d

g

root

X2X1 X4X3 X5 X7X6 X8

x1 x2 x3 x4 x5 x6 x7 x8

Proof of an Item in a Merkle Tree (cont.)

44

● Proof verification:
○ Compare root hash with

hash derived from item and
proof

● Proof for X3:
○ (x4, R), (a , L), (d, R)

● Verification:
○ g = h(h(a h(x3 x4)) d)

● The integrity property ensures
one cannot forge proofs

● Proofs have size proportional
to the logarithm of the number
of items

a b e f

c d

g

root

X2X1 X4X3 X5 X7X6 X8

x1 x2 x3 x4 x5 x6 x7 x8

Proof of an Item in a Merkle Tree (cont.)

45

● The proof of an item is essentially
a chain of hashes

● L/R indicators denote order of
hashing at each node of the
chain

● Size of proof (number of values)
is height of tree, i.e., logarithm
in base two of number of items

● Examples:
○ 8 items, proof size 3
○ 1,024 items, proof size 10
○ 1 M items, proof size 20
○ 1 B items, proof size 30

a b e f

c d

g

root

X2X1 X4X3 X5 X7X6 X8

x1 x2 x3 x4 x5 x6 x7 x8

Who is Merkle?

Source: http://www.merkle.com/

46

Ralph C. Merkle
A pioneer of modern
cryptography
http://www.merkle.com/

http://www.merkle.com/

Selected Related Work
● Authenticated Data

Structures
○ Two party ADS model where

the client maintains a proof
of validity for the data
[Goodrich Tamassia 03]

○ Authenticated skip list
embedded in a relational
table
[Di Battista Palazzi 07]

● Storage check
○ Efficient integrity checking of

untrusted network storage
[Heitzmann, Palazzi,
Papamanthou, Tamassia 08]

● Set operations
○ Query Racing: Fast

Completeness Certification of
Query Results
[Palazzi, Pizzonia, Pucacco
10]

47

