
Operating Systems Security III

CS 1660: Introduction to Computer Systems
Security

So setuid/setgid is dangerous...

2

setuid/setgid is dangerous...
In modern times: only for programs that really need it
• System programs that changing passwords/users, legacy

programs
• Don't do this yourself!

•Very very bad idea for shell scripts

What else can we do?

3

When do we actually need setuid/setgid?

4

Can we do better?

5

In the shell: su, sudo
• Run as another user (if you have permissions)

• Run commands as root (or another user) based on system config file
(/etc/sudoers)
• Can restrict to specific commands, environment,

6

user@shell:~$ su –c "command" other user

/etc/sudoers:
%wheel ALL=(ALL) NOPASSWD: ALL

. . .

user@shell:~$ sudo whoami
root

From man page on /etc/sudoers: (aka sudoers(5))

7

 ALL CDROM = NOPASSWD: /sbin/umount /CDROM,\
 /sbin/mount -o nosuid\,nodev /dev/cd0a /CDROM

 Any user may mount or unmount a CD-ROM on the machines in the CDROM
 Host_Alias (orion, perseus, hercules) without entering a password.

sudo has a LOT of features, see
man sudoers for details!

Why is this better?

8

From sudo’s man page…

9

 -E, --preserve-env
 Indicates to the security policy that the user wishes to

 preserve their existing environment variables. The
 security policy may return an error
 if the user does not have permission to preserve the

 environment.

 --preserve-env=list
 Indicates to the security policy that the user wishes to

 add the comma-separated list of environment variables to
 those preserved from the user's environment. The security
 policy may return an error if the user does not have
 permission to preserve the environment. This option may
 be specified multiple times.

Why is this better?
• Leaves the tricky code that deals with privileges to one program (sudo)

 => Maintained by professionals, like with crypto libraries

• Application developers don’t need to decide how to elevate permissions

• One common system to decide how to authenticate and set policies
=> System users/passwords, /etc/sudoers rules

10

11

However, there can still be problems...
eg. CVE-2021-3156 (more info)

https://blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit

Taking a step back…

Is this enough?

12

Linux Default: Discretionary Access Control
• Owner of a resource decides on how it can be used
• Privileges depend on current user (and some groups)
• To elevate: admin user (root) vs. other users

13

14

=> How many of these can read your browser history?

…. all of them?!?!

15

deemer@ceres$ ls la ~/.mozilla/firefox/Standard/cookies.sqlite
-rw-r--r-- 1 deemer deemer 524288 Jan 10 2023 cookies.sqlite

deemer@ceres$ sqlite3 ~/.mozilla/firefox/Standard/cookies.sqlite
SQLite version 3.44.2 2023-11-24 11:41:44
Enter ".help" for usage hints.
sqlite> .tables
moz_cookies

…. all of them?!?!

16

deemer@ceres$ ls la ~/.mozilla/firefox/Standard/cookies.sqlite
-rw-r--r-- 1 deemer deemer 524288 Jan 10 2023 cookies.sqlite

deemer@ceres$ sqlite3 ~/.mozilla/firefox/Standard/cookies.sqlite
SQLite version 3.44.2 2023-11-24 11:41:44
Enter ".help" for usage hints.
sqlite> .tables
moz_cookies

=> Just a syscall! Works as long as permissions check out 😮
deemer@ceres:~$ strace -- sqlite3 cookies.sqlite
. . .
access("cookies.sqlite", F_OK) = 0
openat(AT_FDCWD, "cookies.sqlite", O_RDONLY) = 3
. . .

17

How many of these should be able to read your browser history?

Why?

18

Why?
• File permissions are very coarse
• Apps might not be trusted
• Apps might get compromised

19

Why?
• File permissions are very coarse
• Apps might not be trusted
• Apps might get compromised

20

=> Would like a more secure design: restrict application
privileges so they can only access what they need

✨

✨

✨

 Principle of Least Privilege
✨

✨

✨

An application should only be able to perform
the operations necessary for its intended purpose

21

How? Depends on the context
Affects design of different systems/abstractions

22

One way: finer-grained permissions
Linux: can we do better than just root vs. non-root?

=> Capabilities: more precise permissions for certain actions, can be
bestowed per-process

23

24

CAPABILITIES (7)

DESCRIPTION
 Starting with Linux 2.2, Linux divides the privileges traditionally
associated with superuser into distinct units, known as capabilities, which can be
independently enabled and disabled
 Capabilities list

 CAP_AUDIT_WRITE (since Linux 2.6.11)
 Write records to kernel auditing log.
 CAP_NET_ADMIN
 Perform various network-related operations
 CAP_SYS_BOOT
 Use reboot(2) and kexec_load(2).

 . . .

API to start processes/threads with or without certain capabilities
=> Possible to “drop” permissions for unsafe operations
=> One you drop permissions, process can’t get them back

25

CAPABILITIES (7)

DESCRIPTION
 Starting with Linux 2.2, Linux divides the privileges traditionally
associated with superuser into distinct units, known as capabilities, which can be
independently enabled and disabled
 Capabilities list

 CAP_AUDIT_WRITE (since Linux 2.6.11)
 Write records to kernel auditing log.
 CAP_NET_ADMIN
 Perform various network-related operations
 CAP_SYS_BOOT
 Use reboot(2) and kexec_load(2).

 . . .

API to start processes/threads with or without certain capabilities
=> Possible to “drop” permissions for unsafe operations
=> One you drop permissions, process can’t get them back

Examples: webservers, sshd, etc.
=> Servers that operate on untrusted inputs

Another way: Process separation
• System service runs as privileged user
• Client program run by unprivileged users

26

Separation of processes
• System service runs as privileged user
• Client program run by unprivileged users
• Some API for how these programs communicate
• Local network connection
• Unix socket
• dbus or other IPC mechanism
• ...

27

One way: Separation of processes
• System service runs as privileged user
• Client program run by unprivileged users
• Some API for how these programs communicate
• Local network connection
• Unix socket
• dbus or other IPC mechanism
• ...

28

=> Better control over how privileged code runs
=> Interface between privileged/unprivileged defined more clearly

Example: docker

29

[root@ceres run]# ls -la /run/docker.sock
srw-rw---- 1 root docker 0 Jan 4 07:26 /run/docker.sock

deemer@ceres$ id
uid=1000(deemer) gid=1000(deemer) groups=1000(deemer),...,966(docker),...

Example: docker

30

[root@ceres run]# ls -la /run/docker.sock
srw-rw---- 1 root docker 0 Jan 4 07:26 /run/docker.sock

deemer@ceres$ id
uid=1000(deemer) gid=1000(deemer) groups=1000(deemer),...,966(docker),...

[root@ceres run]# ps aux | grep docker
root 1417 0.0 0.1 4350944 80252 ? Ssl Jan04 87:22
 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock
. . .

deemer 309604 0.0 0.0 12300 512 ? S+ Feb26 0:00 /bin/bash
 /home/deemer/cs1660/env/run-container

One way: Isolation within OS
Linux namespaces (+ related features): give processes/users separate views
of userspace components

31

Example: chroot (1980s)
• "Change root"
• Run command with separate root directory
• All child processes inherit this root directory

32

Demo: chroot

33

Example: chroot (1980s)
• "Change root"
• Run command with separate root directory
• All child processes inherit this root directory

• Implications?

34

If you need to do this in practice: look up "schroot"

One way: Isolation within OS
Linux namespaces (+ related features): give processes/users separate views
of userspace components
• chroot (separate filesystem trees)
• Processes trees
• UIDs/GIDs
• cgroups (Resource limits/quotas)
• Network connections
• Time
• . . .

35

One way: Isolation within OS
Linux namespaces (+ related features): give processes/users separate views
of userspace components
• chroot (separate filesystem trees)
• Processes trees
• UIDs/GIDs
• cgroups (Resource limits/quotas)
• Network connections
• Time
• . . .

36

Not a security feature per se, but can help...

Containers (ie, Docker) [ON LINUX]
Automated way to run applications
• Leverages lots of Linux namespaces at once
• Super great for deploying software!!

37

Example: course container

38

What do we notice?
• Separate filesystem
• Separate UIDs/GIDs
• Can be root in the container => does it matter?

• Separate network interfaces, etc.

• When running the container, we decide what resources are shared with the
host (files, network, etc)

39

Isolation mediated by Docker, OS kernel

What does this mean?
• Easy to "punch holes" depending on configuration
• Shared directories, "privileged containers", ...

• Namespaces are growing all the time
• Docker has lots of permissions levels for what privileges containers can use

40

A lot of "knobs"...
• What if the configuration is incorrect?
• What if the kernel has a bug?

41

Problems?

42

But…

What if the container config is incorrect?
What if the kernel has a bug?

What if you don’t trust the software you’re running?

43

Another way: Virtual Machines (VMs)
Isolated way to run an entire system (hardware, kernel, ...)

44

Another way: Virtual Machines (VMs)
Isolated way to run an entire system (hardware, kernel, ...)
• A whole OS could run as a program
• Modern systems: hardware support for isolating memory, page tables, etc.

and preserving performance
• Curious? Take CS1670.

• Virtual hardware/drivers to interact with host

45

Another way: Virtual Machines (VMs)
Isolated way to run an entire system (hardware, kernel, ...)
• A whole OS could run as a program
• Modern systems: hardware support for isolating memory, page tables, etc.

and preserving performance
• Curious? Take CS1670.

• Virtual hardware/drivers to interact with host

46

=> "Stronger" isolation, possibly more overhead for
configuration/performance vs. containers

Example: A VM

47

So where should we run our untrusted code?
• Functionality: What privileges should the code (or the user) have?
• Threat model: What are the attacker's capabilities?

48

Docker on Windows, Mac?
Windows/Mac don't have Linux namespaces...

49

Comparing isolation mechanisms

50

Mechanism "Interface" to privileged operations

setuid/setgid
application

Application code

Process isolation
(client/server process)

API between client program and service
(network protocol, socket file, IPC calls, ...)

Container OS kernel (+ any host features turned on by
container author)

VM Virtualization Platform
(hypervisor, virtual device drivers, shared folders, ...)

51

How many of these should be able to read your browser history?

52

access("cookies.sqlite", F_OK) = 0
openat(AT_FDCWD, "cookies.sqlite", O_RDONLY) = 3

53

access("cookies.sqlite", F_OK) = 0
openat(AT_FDCWD, "cookies.sqlite", O_RDONLY) = 3

=> Fine-grained permissions at runtime!

…at compile time?

54

55

Other ways?

• What does it mean for the user to be "unprivileged"?
• What does it mean for code run by a user to be

"unprivileged"?

• What do we want that code to be able to do?
=> How much do we trust the user? The code?

56

Other ways?

• What does it mean for the user to be "unprivileged"?
• What does it mean for code run by a user to be

"unprivileged"?

• What do we want that code to be able to do?
=> How much do we trust the user? The code?

• sudo is pretty coarse-grained…
57

