
Operating Systems Security II

CS 1660: Introduction to Computer Systems
Security

Privileges and setuid/setgid

Unix File Types RWX and octal notation

d r w x r w x r w x

owner group other

2file type

4 2 1Octal
Notation

+ + 7=

RECAP

When a user runs a process, the OS keeps track of:

 - UID: user running the process

 - GID: group ID for that user

 - EUID: "effective UID => UID as used for permissions checks, etc.

 - EGID: "effective" GID

UID 1000 => open("/home/alice/file.txt",)

 => Considers effective UID/GID to decide if you have access

=> Normally UID == EUID, GID == EGID, except with setuid or setgid

setuid/setgid
Special permissions bits:
• setuid (Set User ID): executable runs with privileges of owner, regardless of

who runs it
• setuid (Set Group ID): executable runs with privileges of group, regardless

of who runs it

3

4T SET GID

setuid/setgid
Special permissions bits:
• setuid (Set User ID): executable runs with privileges of owner, regardless of

who runs it
• setuid (Set Group ID): executable runs with privileges of group, regardless

of who runs it

4

Unprivileged user can run program with higher privileges!
=> Powerful, but very dangerous

Disclaimer

setuid/setgid is dangerous. Using it incorrectly can cause serious problems.

Just as you should never implement your own crypto,
you should not write your own setuid/setgid programs.

You are about to see why.

6

Background: environment variables
System variables that control how processes execute
Set up when a user logs in, as part of shell

8

Get variables
cs1660-user@6010f6e96b02:~$ echo $TERM
xterm
cs1660-user@6010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable
cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@6010f6e96b02:~$ echo $SOMETHING
Hello

Show the environment
cs1660-user@6010f6e96b02:~$ env
. . .

Scope is per-shell: log out/open new term => different vars

Background: $PATH
Where the shell looks when you run programs
=> List separated by “:”, traversed in order

9

Get variables
cs1660-user@6010f6e96b02:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin

which: $PATH lookup
cs1660-user@6010f6e96b02:~$ which ls
/usr/bin/ls

cs1660-user@6010f6e96b02:~$ which go
/usr/local/go/bin/go

Problems
Input from user pollutes execution environment

=> Another form of code injection!

10

Not every command can be overridden…

11

Aside: Some common commands, like "echo" are so common they're part
of the bash shell itself => these are called builtins

Older shells execute almost everything as a comment, but more modern
shells like bash optimize this with some builtin commands

=> Search "bash builtins" for more info

Background: symbolic links
Indirection in the filesystem: path of one file can point to another

13

Create a symlink
registrar@ceres:~$ ln –sv scripts/reg-v01.sh reg.sh
reg.sh -> scripts/reg-v01.sh

How it looks
registrar@ceres:~$ ls –la reg.sh
lrwxrwxrwx 1 reg reg 9 Mar 12 16:40 reg.sh -> scripts/reg-v01.sh

Use it just like a normal file
registrar@ceres:~$./reg.sh

Problem: anyone can create a symlink to anything!
=> Permissions checked on access, not at creation

What can we do about vulnerabilities like this?

Problem: if we compare a path like this:

if compare /source/path /dest/path
 // DO thing

The open() and read() of the file is happening in a privileged context

Options:

 - Drop privileges: do check as effective user

 - Could get unprivileged program to provide input in a different way

 => Pass code on stdin, that way alice is the one that needs to open() and
read() the file

Principle of least privilege => avoid doing operations with
more privileges than necessary

What can go wrong?

14

ELSE

TOCTOU: Time of check/time of use

15

Check for access
if ! __effective_user_can_access $code_from_user; then
 echo "You don't have permission to view this file"
 exit 1
fi

Do the access
if cmp --silent $code_expected $code_from_user; then
 echo "Override code approved!"
 add_to_course $course $user
else
 echo "Please use a valid override code"
fi

A race condition!

a

So why is setuid/gid bad?

Up to the developer to decide what parts of the program can run
with elevated privileges
 => Particularly dangerous for shell scripts

17

Break!

18

So setuid/setgid is dangerous...

19

setuid/setgid is dangerous...
In modern times: only for programs that really need it
• System programs that changing passwords/users, legacy programs
• Don't do this yourself!

• Very very bad idea for shell scripts

What else can we do?

20

When do we need this?

21

In the shell: su, sudo
• Run as another user (if you have permissions)

• Run commands as root (or another user) based on system config file
(/etc/sudoers)
• Can restrict to specific commands, environment,

22

user@shell:~$ su –c "command" other user

/etc/sudoers:
%wheel ALL=(ALL) NOPASSWD: ALL

. . .

user@shell:~$ sudo whoami
root

From man page on /etc/sudoers: (aka sudoers(5))

23

 ALL CDROM = NOPASSWD: /sbin/umount /CDROM,\
 /sbin/mount -o nosuid\,nodev /dev/cd0a /CDROM

 Any user may mount or unmount a CD-ROM on the machines in the CDROM
 Host_Alias (orion, perseus, hercules) without entering a password.

sudo has a LOT of features, see
man sudoers for details!

Principle of Least Privilege

An operation should only be able to perform the operations necessary for its
intended purpose

27

What ELSE could we do?

24

Separation of processes
• System service runs as privileged user
• Client program run by unprivileged users
• Some API for how these programs communicate
• Local network connection
• Unix socket
• dbus or other IPC mechanism
• ...

25

More content for reference

33

Unix File Types RWX and octal notation

d r w x r w x r w x

owner group other

2file type

4 2 1Octal
Notation

+ + 7=

Octal Notation (recap)
Another way to specify permissions
• Digits from left (most significant) to right(least

significant):
[special bits][user bits][group bits][other bits]

• Special bit digit =
(4 if setuid) + (2 if setgid) + (1 if sticky)

• All other digits =
(4 if readable) + (2 if writable) + (1 if executable)

34

Permissions Examples (Regular Files)

35

read/write/execute to everyone-rwxrwxrwx
read-only to everyone, including owner-r--r--r--

read/write/execute for owner, forbidden to
everyone else

-rwx------

read/write for owner, read-only for group,
forbidden to others

-rw-r-----

read/write for owner, read-only for everyone
else

-rw-r—r--

Permissions for Directories
• Permissions bits interpreted differently for directories
• Read bit allows listing names of files in directory, but not their

properties like size and permissions
• Write bit allows creating and deleting files within the directory
• Execute bit allows entering the directory and getting properties

of files in the directory
• Lines for directories in ls –l output begin with d, as below:
jk@sphere:~/test$ ls –l

Total 4
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dir1
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 file1

36

Permissions Examples (Directories)

37

full access to everyone-rwxrwxrwx

full access to owner, group can access known
filenames in directory, forbidden to others

drwx--x---

full access to owner and group, forbidden to
others

drwxrwx---

all can enter and list the directory, only owner
can add/delete files

drwxr-xr-x

The /tmp Directory

• In Unix systems, directory /tmp is
– Read/write for any user
– Wiped on reboot (or lives entirely in memory)

Convenience
– Place for temporary files used by applications
– Files in /tmp are not subject to the user’s space quota

What could go wrong?

38

setuid bit: Set-user-ID

• On executable files, causes the program to run as file owner
regardless of who runs it

• How to view: shown as s instead of x
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid

39

Setuid Programs

40

• Unix processes have two user IDs:
– real user ID (UID): user launching the process
– effective user ID (EUID): user whose privileges are granted to the

process
• If a user A executes a setuid file owned by B, then the

effective user ID of the process is B and not A

Setuid Programs

41

• System call setuid(uid) allows a process to change its
effective user ID to uid

• Some programs that access system resources are owned by
root and have the setuid bit set (setuid programs)
–e.g., passwd and su

• Setuid generally ignored on shell scripts—why?

setgid bit: Set-group-ID (recap)
• On executable files: causes the program to run with the file’s group,

regardless of whether the user who runs it is in that group
• On directories, causes files created within the directory to have the

same group as the directory

Examples
-rwxr-sr-x: setgid file, executable by all
drwxrwsr-x: setgid directory; files within will have group of directory

42

Time of Check /Time of Use
(TOCTOU)

eg. Race Condition

43

Race Condition

44

• A race condition occurs when two
threads want to access the same
memory

• Run Thread 1() and Thread 2()
• Outcome is 1 or 2

Global x = 0

Thread 1():
 LOAD x
 ADD 1
 STORE x

Thread 2():
 LOAD x
 ADD 1
 STORE x

Race Condition

45

1. if (!access("/tmp/X", W_OK)) {
/* the real user ID has access right */

2. f = open("/tmp/X", O_WRITE);

3. write_to_file(f);
}

else {
/* the real user ID does not have access
right */

4. fprintf(stderr, "Permission denied\n");
}

• Fragment of setuid program
that writes into file /tmp/X on
behalf of a user who created it

• access verifies permission of
real user ID
• Transparently follows symlinks

• open verifies permission of
effective user ID
• Transparently follows symlinks

• What can go wrong?
Source: Kevin Du, Race Condition Vulnerability, Lecture Notes

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

TOCTOU Vulnerability

46

• What can go wrong?
• In between (1) and (2), user

could replace /tmp/X with
symlink to /etc/passwd

• Not easy to accomplish (timing)

• Example of time of check to
time of use (TOCTOU)
vulnerability

1. if (!access("/tmp/X", W_OK)) {
/* the real user ID has access right */

2. f = open("/tmp/X", O_WRITE);
3. write_to_file(f);

}
else {

/* the real user ID does not have
access right */

4. fprintf(stderr, "Permission denied\n");
}

Attempt to Fix the Race Condition

47

1. lstat("/tmp/X", &statBefore);
2. if (!access("/tmp/X", O_RDWR)) {
3. int f = open("/tmp/X", O_RDWR);
4. fstat(f, &statAfter);
5. if (statAfter.st_ino == statBefore.st_ino) {
 /* the I-node is still the same */
6. write_to_file(f);
 }
7. else perror("Race Condition Attacks!");
 }
8. else fprintf(stderr, "Permission denied\n");

 }

• lstat and fstat access file
descriptor for a path, which
includes unique file ID (st_ino)
• lstat does not traverse symlink
• fstat accesses descriptor of open file,

after symlink traversed by open
• Step (5) compares IDs of

• file checked in (1) and
• file opened in (3)

• Check-use-check_again approach
• Defeats swapping in symlink

between access and open
• Fails also if /tmp/X is a symlink

when (2) is executedSource: Kevin Du, Race Condition Vulnerability, Lecture Notes

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

Does the Fix Work?

48

• New attack
• Before (1) /tmp/X is a hard link to

/etc/passwd
• Between (1) and (2) swap in hard

link to user-owned file
• Between (2) and (3) swap in again

hard link to /etc/passwd
• This passes the ID check

in (5) and allows the user to
write to /etc/passwd

1. lstat("/tmp/X", &statBefore);
2. if (!access("/tmp/X", O_RDWR)) {
3. int f = open("/tmp/X", O_RDWR);
4. fstat(f, &statAfter);
5. if (statAfter.st_ino == statBefore.st_ino) {
 /* the I-node is still the same */
6. write_to_file(f);
 }
7. else perror("Race Condition Attacks!");
 }
8. else fprintf(stderr, "Permission denied\n");

 }

Negative Result

49

• Assumptions
• Setuid program

• Path-based permission check for real
user ID via syscall
access(path, permission) that returns 0
or -1

• No atomic check-and-open file syscall

• Theorem
• Program is vulnerable to TOCTOU race

condition

• Proof
• Attacker can always swap good file

before access and bad file after access

• lstat/fstat do not help since they are
path-based as well

• Reference
• Drew Dean, Alan J. Hu: Fixing Races for

Fun and Profit: How to Use access (2).
USENIX Security Symposium, 2004.

https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf

Mitigating and Eliminating Race Conditions

50

• Hardness amplification
• Force the adversary to win a large

number of races instead of just one or
two in order to exploit the vulnerability
• Reduces the probability of success
• Complex to accomplish correctly
• Reference

• Dan Tsafrir, Tomer Hertz, David Wagner,
Dilma Da Silva: Portably Solving File
TOCTTOU Races with Hardness
Amplification. USENIX File and Storage
Technologies, 2008

• Temporary privilege downgrade
• Within same process

• Drop to real user ID privileges via
setuid(real_userid)

• Open file
• Restore root privileges

• With child process
• Fork child process with real user ID

privileges to open file
• Approach not portable across Unix

variants
https://www.usenix.org/legacy/events
/sec02/full_papers/chen/chen.pdf

https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf
https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf
https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf

Historical setuid Unix Vulnerabilities: lpr

51

• Command lpr
• running as root setuid
• copied file to print, or symbolic

link to it, to spool file named with
3-digit job number (e.g.,
print954.spool) in /tmp

• Did not check if file already existed
• Random sequence was predictable

and repeated after 1,000 times
• How can we exploit this?

• Attack
• A dangerous combination: setuid,

/tmp, symlinks, …
• Create new password file newpasswd
• Print a very large file
• lpr –s /etc/passwd
• Print a small file 999 times
• lpr newpasswd
• The password file is overwritten with

newpasswd
https://web.ecs.syr.edu/~wedu/Teaching/cis643
/LectureNotes_New/Race_Condition.pdf

What We Have Learned

• Code as Data
• Setuid programs
• Dangers of symlinks, setuid, and shared

directories
• Race conditions and time-of-check-to-time-of-use

for access/open syscalls
• Examples of Attacks

52

