
Web Security IV:
Web Frameworks & Wrapup

CS 1660: Introduction to Computer Systems Security

Web Frameworks

2

Web Development
Usually managed by a 3-tier architecture
with a client–server approach articulate in
3 layers logically separated in which:

– Presentation
This level of the application is the user interface. The
interface is used to translate tasks and results to
something the user can understand.
– Logic
This layer coordinates the application of the web site, and
it moves and processes data between the two surrounding
layers
– Data tiers
Information stored and retrieved from a database or file
system. The information is passed back to the logic tier for
processing, and then eventually back to the user

Source: https://en.wikipedia.org/wiki/Multitier_architecture/3

https://www.spectator.co.uk/comic/open-sesame/

Threat and risk modeling process
• Browser may attack

– Server
– Other browsers

• Server may attack
– Browser
– Machine of browser
– Other servers

• User may trust
– Server to protect user

data
– Server to protect browser

from other servers
– Browser to protect user

data
– Browser to protect user

from malicious server

4

Web Frameworks
• Apache Tomcat
• Spring MVC
• AngularJS
• JBoss
• Node.js
• Django
• Apache Struts

5

Usually we do not develop website using just
a text editor we use Web Frameworks that
bring services e.g.:

– URL routing
– Input form managing and validation
– HTML, XML, JSON, AJAX, etc.
– Database connection
– Web security against Cross-site request

forgery (CSRF), SQL Injection, Cross-site
Scripting (XSS), etc.

– Session repository and retrieval

Web Security Standard solutions
•Usually web security is built in the framework or
external libraries:
–Authentication and session management (e.g. cookies
generation)
–Input validation (sanitization) through common patterns
(email, credit card, etc.) or char escaping
–Avoid building SQL from user input
–Password: hash and salting
–Etc.

6

What have we learned?

7

• Several classes of attacks that operate on different parts of the system
• Capabilities differ based on where vulnerability is located
• Problems across multiple components

8

Browser Server

DB

The software stack…

9

What happens when a vulnerability is
discovered?

10

What can go wrong?

11

12“Dependency”: https://xkcd.com/2347/

https://xkcd.com/2347/

Software Ecosystem + Security
• Modern software is built from many independently-maintained

components

• Every component has different processes and development resources
available for updates and security. Some have none.

13

Software Ecosystem + Security
• Modern software is built from many independently-maintained

components

• Every component has different processes and development resources
available for updates and security. Some have none.

14

Requires a coordinated effort among many groups to monitor and update systems!
=> As much a social problem as a technical one!

When vulnerabilities occur…
• How to find a fix? (If it can be fixed…)

• How to distribute the update?

15

Example: log4j vulnerability

16

Example: log4j vulnerability

17

“Zero-day” arbitrary code execution in open-source Java library log4j since at least
2013, discovered in 2021

 => Estimated to have affected 93% of enterprise cloud environments

How do we find vulnerabilities?

What happens afterward?

18

Who finds vulnerabilities?
• Hopefully part of normal software development

• Security researchers (independent, academic, private)

19

Who finds vulnerabilities?
• Hopefully part of normal software development

• Security researchers (independent, academic, private)

• Might only find out once vulnerability has been exploited…

20

Who finds vulnerabilities?
• Hopefully part of normal software development

• Security researchers (independent, academic, private)

• Might only find out once vulnerability has been exploited…

21

=> “Zero day”: a vulnerability unknown to anyone capable of
mitigating it (known only to attackers)

How to track them?
CVE (Common Vulnerabilities and Exposure): a standard numbering/tracking
system for vulnerabilities across software projects

Eg. CVE-2021-44228: Apache Log4j2 2.0-beta9 through
2.15.0 (excluding security releases 2.12.2, 2.12.3, and
2.3.1) …

22

How to track them?
CVE (Common Vulnerabilities and Exposure): a standard numbering/tracking system
for vulnerabilities across software projects

Eg. CVE-2021-44228: Apache Log4j2 2.0-beta9 through 2.15.0
(excluding security releases 2.12.2, 2.12.3, and 2.3.1)

How it works
• Primary numbering/databases maintained by MITRE corporation (US gov. funded) &

NIST
• Software vendors assign CVEs based on vulnerability reports
• Many other vulnerability databases/resources use CVE numbers

23

24

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.kb.cert.org/vuls/id/930724

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://www.kb.cert.org/vuls/id/930724

25https://www.cvedetails.com/

https://www.cvedetails.com/

26https://www.cvedetails.com/

https://www.cvedetails.com/

27

What happens after discovery?

28

29“Dependency”: https://xkcd.com/2347/

https://xkcd.com/2347/

Say you find a vulnerability. Do you….

• Tell the world immediately so everyone knows about the problem

• Report to developers so they can fix it before going public

30

Say you find a vulnerability. Do you….

• Tell the world immediately so everyone knows about the problem
 => Full disclosure

• Report to developers so they can fix it before going public
 => Coordinated disclosure

31

Say you find a vulnerability. Do you….

• Tell the world immediately so everyone knows about the problem
 => Full disclosure

• Report to developers so they can fix it before going public
 => Coordinated disclosure

• Use or sell it for profit
 => Zero-days…

32

33“Dependency”: https://xkcd.com/2347/

https://xkcd.com/2347/

Coordinated disclosure in practice
• Usually, report vulnerability privately to software maintainer first

• ”Embargo” period where discussion is private => software companies
ideally coordinate to push fixes ASAP

• Go public once once fixes/mitigations are available

34

Coordinated disclosure in practice
• Usually, report vulnerability privately to software maintainer first

• ”Embargo” period where discussion is private => software companies
ideally coordinate to push fixes ASAP

• Go public once once fixes/mitigations are available

35

Problems?

Coordinated disclosure in practice
• Usually, report vulnerability privately to software maintainer first

• ”Embargo” period where discussion is private => software companies
ideally coordinate to push fixes ASAP

• Go public once once fixes/mitigations are available

36

=> How to incentivize?
=> How to keep companies from stalling?

Google’s Project Zero

37https://about.google/appsecurity/

https://about.google/appsecurity/

Some strategies
• Open source: many ”eyes” on the same project => more rigorous auditing

for bugs

• Incident response plans: make dealing with vulns part of the software
development process

• Bug bounties: incentives ($$$) from companies to report bugs to them first
=> Usually requires coordinated disclosure

38

39

40https://security.apple.com/terms-and-conditions/

https://security.apple.com/terms-and-conditions/

Bonus: Flash

41

