
Web Security II:
Sessions and Requests, CSRF

CS1660 Introduction to Computer Security

What we know so far
• HTTP and Browsers
• Cookies (and what happens if you steal them)
• “Client-side controls”

2

Today
•More about requests: same-origin/cross-origin
• CSRF attacks
• Session token entropy

3

A generic web architecture

4

Review: Cookies

Key-value pairs (stored in browser) that keep track of
certain information
•User preferences, session ID, session expiration, etc.
•Key attributes (so far):
• Domain: eg. cs.brown.edu .brown.edu

5

Review: Cookies

Key-value pairs (stored in browser) that keep track of certain
information
• User preferences, session ID, tracking, ad networks, etc.
• Key attributes (so far):
• Domain: eg. cs.brown.edu .brown.edu

6

When a request is made, all cookies with a matching domain are sent with it
…subject to certain other browser restrictions (today’s topic!)

Cookies: examples
• Session ID: cookie used for authentication
• App state: Shopping cart, page views
• Ad networks/tracking
…

7

Javascript

•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)

8

Javascript

•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)

Capabilities
• Read/modify web pages
• DOM: Document Object Model

•Make requests asynchronously => dynamic content

9

Essential to all modern webpages

Javascript

Examples
• Read / modify elements of the DOM

• “Look for all <p> tags and return their content”
• “Change the content within all tags to _____”
• “Fetch resource at <URL> and add it to the page”

• Make web requests: fetch(), XMLHTTPRequest()
• Read cookies

alert(document.cookie);

10

<script type="text/javascript">
function hello() { alert("Hello world!");}

</script>

Examples: Requests

11

Example: our demo site
A really poor website

12

PHP
Server-side web scripting language, first released 1993

13

index.php:
<!DOCTYPE html>
<html>
<head> <title>PHP "Hello, World!" program</title> </head>
 <body>
 <?php echo '<p>Hello, World!</p>'; ?>
 </body>
</html>

PHP
Server-side web scripting language, first released 1993

14

index.php:
<!DOCTYPE html>
<html>
<head> <title>PHP "Hello, World!" program</title> </head>
 <body>
 <?php echo '<p>Hello, World!</p>'; ?>
 </body>
</html>

Þ Archaic, but still widely used
Þ Same concepts apply to others!

15

According to a study by W3Techs:

As of 2024, PHP was in use by 76.5% of websites where
the backend programming language could be detected

 58.8% of these were using known-insecure PHP versions

Used by: Facebook, Wikipedia, Wordpress, …

https://w3techs.com/technologies/details/pl-php

Problems?

16

Problems?
Just like all software, modern pages are built from many
components
• Load external objects from other sites (images, CSS)
• Load code from other sites
•Make requests to other sites

Also, we visit a lot of sites!

17

18

How to enable pages to load external resources?

How to keep code/data/cookies from one page from
interfering with another?

19

How to enable pages to load external resources?

How to keep code/data/cookies from one page from
interfering with another?

(… except when that’s what we want)

Same origin policy (SOP): so far
• Limits how a site can set cookies
• Limits which cookies are sent on each request

In general, “origin” must match:
https://site.example.com[:443]/some/path

20

SOP: Requests

Websites can submit requests to another site (e.g., sending a GET / POST
request, image embedding, Javascript requests (XMLHttpRequest,
fetch)
• Can generally embed (display in browser) cross-origin response
• Embedding an image
• Opening content / opening the response to a request in an iframe

21

What can we do with this?

22

Break!

23

CSRF attacks
Browser performs unwanted action while user is authenticated

24

CSRF Mechanics

• Server trusts victim
(login)
• Victim trusts attacker

enough to click
link/visit site
• Attacker could be a

hacked legitimate
site

25

Victim

Server

AttackerMalicious
Request

Legitimate
Request

Login

CSRF: via GET

• Bad practice: state change info encoded in GET request
• Can easily "replay" request

26

bad-site.com:

<a href="http://bank.com/transfer.php&acct=1234?amt=1000.00?...

CSRF: via POST

27

bad-site.com:

<form action="https://bank.com/wiretransfer" method="POST"

 id=”bank">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
</form>
document.getElementById(”bank").submit();

Is user is logged in, this will work!

CSRF Demo

28

How can we restrict which origins can make requests?

29

How can we restrict which origins can make requests?

30

Multiple mechanics, implemented at different layers of
the system

=> Defense in depth!

Server-side: CSRF token

Server sends unguessable value to client, include as hidden
variable in POST

On POST, server compares against expected value, rejects if
wrong or missing

31

<form action="/transfer.do" method="post">
<input type="hidden" name="csrf_token" value=”aXg3423fjp. . .">
[...]
</form>

What does this prove?

CSRF Token: Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set

via cookie

32

CSRF Token: Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set

via cookie

How to generate the tokens?
• "Synchronizer token": server picks random value, saves for

checking
• "Encrypted token": server sends encrypt/MAC of some value

that can be checked without saving extra state (eg. user ID)
33

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is
a different site:

35

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

More info: Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Limit cookie sharing

SameSite attribute: control how cookie is shared when origin is
a different site:

• None: No restrictions*
• Strict: Send cookie only when request originates from site that

sent the cookie
• Lax (default since 2021): allow cross-site requests for requests

initiated by user (eg. clicking a link, but not Javascript)

36

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

More info: Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Limit cookie sharing

More important attributes:

37

Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

More info: Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Limit cookie sharing

More important attributes:

• Secure (true/false): Only send this cookie when using HTTPS

• HttpOnly (true/false): If true, cookie can’t be read by
Javascript (but can still be sent by requests)

38

Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

More info: Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

39

Another way: checking headers
"Referer" [sic] header: URL from which request is sent

40

Another way: checking headers
• Check Referer header on request, see if it matches expected origin
• Browser limits how Referer header can be changed

=> Useful if you trust browser; but ultimately can be controlled by
client

41

User Interaction
Force certain high-value operations to require use input

42

43

44

Tradeoff => security vs. usability

CORS: Cross-Origin Resource Sharing

Systematic way to set permissions for cross-origin requests for most
dynamic resources (Javascript and others)

45

CORS: Cross-Origin Resource Sharing

Systematic way to set permissions for cross-origin requests for most
dynamic resources (Javascript and others):

46

Allow origin example.com to use resources from here
Access-Control-Allow-Origin: https://example.com

Allow any origin to use resources from here
Access-Control-Allow-Origin: *

If Origin not allowed by header,
browser prevents page from using resource
=> Browser must implement this properly!

CORS: Further reading
• Gained adoption in major browsers 2009-2015

• Requires site owners to define policies for how resources are used

• For some requests, browser will do a “preflight” request to see if
authorized first

• Extra nuances for requests that send cookies “credentialed”
requests

47

Overview here: Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

What We Have Learned
•Motivation and specifications for session management
• Session ID implementations
• Cookie
• GET variable
• POST variable

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques

48

Potential issues

• SameSite attribute set to Strict:
• the browser will not include the cookie in any requests that originate from

another site.

• A logged-in user follows a third-party link to a site:
• they will appear not to be logged in, and will need to log in again before

interacting with the site in the normal way

• Potential problems for usability and user tracking (e.g. Ads)

49

