
Web Security II: 
Sessions and Requests, CSRF

CS1660 Introduction to Computer Security



What we know so far
• HTTP and Browsers
• Cookies (and what happens if you steal them)
• “Client-side controls”
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Today
•More about requests:  same-origin/cross-origin
• CSRF attacks
• Session token entropy
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A generic web architecture
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Review: Cookies

Key-value pairs (stored in browser) that keep track of 
certain information
•User preferences, session ID, session expiration, etc.
•Key attributes (so far):
• Domain:  eg. cs.brown.edu .brown.edu
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Review: Cookies

Key-value pairs (stored in browser) that keep track of certain 
information
• User preferences, session ID, tracking, ad networks, etc.
• Key attributes (so far):
• Domain:  eg. cs.brown.edu .brown.edu
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When a request is made, all cookies with a matching domain are sent with it
…subject to certain other browser restrictions (today’s topic!)



Cookies:  examples
• Session ID:  cookie used for authentication
• App state:  Shopping cart, page views
• Ad networks/tracking
…
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Javascript

•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)
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Javascript

•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)

Capabilities
• Read/modify web pages
• DOM:  Document Object Model

•Make requests asynchronously => dynamic content
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Essential to all modern webpages



Javascript

Examples
• Read / modify elements of the DOM

• “Look for all <p> tags and return their content”
• “Change the content within all <img> tags to _____”
• “Fetch resource at <URL> and add it to the page”

• Make web requests:  fetch(), XMLHTTPRequest()
• Read cookies

alert(document.cookie);
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<script type="text/javascript">
function hello() { alert("Hello world!");}

</script>



Examples:  Requests
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Example:  our demo site
A really poor website
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PHP
Server-side web scripting language, first released 1993

13

index.php:
<!DOCTYPE html> 
<html> 
<head> <title>PHP "Hello, World!" program</title> </head> 
  <body> 
   <?php echo '<p>Hello, World!</p>'; ?>
 </body>
</html>



PHP
Server-side web scripting language, first released 1993
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index.php:
<!DOCTYPE html> 
<html> 
<head> <title>PHP "Hello, World!" program</title> </head> 
  <body> 
   <?php echo '<p>Hello, World!</p>'; ?>
 </body>
</html>

Þ Archaic, but still widely used
Þ Same concepts apply to others!
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According to a study by W3Techs:

As of 2024, PHP was in use by 76.5% of websites where 
the backend programming language could be detected

 58.8% of these were using known-insecure PHP versions

Used by:  Facebook, Wikipedia, Wordpress, …

https://w3techs.com/technologies/details/pl-php


Problems?
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Problems?
Just like all software, modern pages are built from many 
components
• Load external objects from other sites (images, CSS)
• Load code from other sites
•Make requests to other sites

Also, we visit a lot of sites!
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How to enable pages to load external resources?

How to keep code/data/cookies from one page from 
interfering with another?
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How to enable pages to load external resources?

How to keep code/data/cookies from one page from 
interfering with another?

(… except when that’s what we want)



Same origin policy (SOP):  so far
• Limits how a site can set cookies
• Limits which cookies are sent on each request

In general, “origin” must match:
https://site.example.com[:443]/some/path
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SOP: Requests

Websites can submit requests to another site (e.g., sending a GET / POST 
request, image embedding, Javascript requests (XMLHttpRequest, 
fetch)
• Can generally embed (display in browser) cross-origin response
•  Embedding an image
•  Opening content / opening the response to a request in an iframe
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What can we do with this?
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Break!
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CSRF attacks
Browser performs unwanted action while user is authenticated
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CSRF Mechanics

• Server trusts victim 
(login)
• Victim trusts attacker  

enough to click 
link/visit site 
• Attacker could be a 

hacked legitimate 
site
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Victim

Server

AttackerMalicious 
Request

Legitimate 
Request

Login



CSRF:  via GET

• Bad practice:  state change info encoded in GET request
• Can easily "replay" request
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bad-site.com:

<a href="http://bank.com/transfer.php&acct=1234?amt=1000.00?...



CSRF:  via POST
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bad-site.com:

<form action="https://bank.com/wiretransfer" method="POST"   

      id=”bank">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
</form>
document.getElementById(”bank").submit(); 

Is user is logged in, this will work!



CSRF Demo
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How can we restrict which origins can make requests?
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How can we restrict which origins can make requests?
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Multiple mechanics, implemented at different layers of 
the system

=> Defense in depth!



Server-side:  CSRF token

Server sends unguessable value to client, include as hidden 
variable in POST

On POST, server compares against expected value, rejects if 
wrong or missing
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<form action="/transfer.do" method="post">
<input type="hidden" name="csrf_token" value=”aXg3423fjp. . .">
[...]
</form>

What does this prove?



CSRF Token:  Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set 

via cookie
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CSRF Token:  Mechanics

Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set 

via cookie

How to generate the tokens?
• "Synchronizer token":  server picks random value, saves for 

checking
• "Encrypted token":  server sends encrypt/MAC of some value 

that can be checked without saving extra state (eg. user ID)
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Limit cookie sharing

SameSite attribute:  control how cookie is shared when origin is 
a different site:
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Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

More info:  Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie


Limit cookie sharing

SameSite attribute:  control how cookie is shared when origin is 
a different site:

• None:  No restrictions*
• Strict:  Send cookie only when request originates from site that 

sent the cookie
• Lax (default since 2021):  allow cross-site requests for requests 

initiated by user (eg. clicking a link, but not Javascript)
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Set-Cookie: sessionid=12345; Domain=b.com; SameSite=None

More info:  Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie


Limit cookie sharing

More important attributes:
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Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

More info:  Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie


Limit cookie sharing

More important attributes:

• Secure (true/false): Only send this cookie when using HTTPS

• HttpOnly (true/false): If true, cookie can’t be read by 
Javascript (but can still be sent by requests)
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Set-Cookie: sessionid=12345; . . . HttpOnly=true, Secure

More info:  Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
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Another way:  checking headers
"Referer" [sic] header:  URL from which request is sent
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Another way:  checking headers
• Check Referer header on request, see if it matches expected origin
• Browser limits how Referer header can be changed

=> Useful if you trust browser; but ultimately can be controlled by 
client
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User Interaction
Force certain high-value operations to require use input
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Tradeoff => security vs. usability



CORS:  Cross-Origin Resource Sharing

Systematic way to set permissions for cross-origin requests for most 
dynamic resources (Javascript and others)
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CORS:  Cross-Origin Resource Sharing

Systematic way to set permissions for cross-origin requests for most 
dynamic resources (Javascript and others):
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# Allow origin example.com to use resources from here
Access-Control-Allow-Origin: https://example.com

# Allow any origin to use resources from here
Access-Control-Allow-Origin: *

If Origin not allowed by header, 
browser prevents page from using resource
=> Browser must implement this properly!



CORS:  Further reading
• Gained adoption in major browsers 2009-2015

• Requires site owners to define policies for how resources are used

• For some requests, browser will do a “preflight” request to see if 
authorized first

• Extra nuances for requests that send cookies “credentialed” 
requests
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Overview here:  Mozilla MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS


What We Have Learned
•Motivation and specifications for session management
• Session ID implementations
• Cookie
• GET variable
• POST variable

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques
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Potential issues

• SameSite attribute set to Strict: 
• the browser will not include the cookie in any requests that originate from 

another site.

• A logged-in user follows a third-party link to a site:
• they will appear not to be logged in, and will need to log in again before 

interacting with the site in the normal way

• Potential problems for usability and user tracking (e.g. Ads)
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