
Web Security I

Web Security Models
Browser Security

Web Technologies and Protocols

2/15/24 Web Security I 1

Web Security Model

2/15/24 Web Security I 2

Web
Server

Web Applications

2/15/24 3Web Security I

Browser
responses

requests

What are the dangers?

NetworkClient

Server

Web
Server

Threat Models

2/15/24 4Web Security I

Browser
responses

requests

malware,
compromised

client

network
attacker

web attacker
The main vector of

attack is via the
content of a website

Denial Of Service
(DOS) attacks, or

malware

Network Attacks
Source Destination

Standard Flow

Source Destination

Block (DoS)

Creation (spoofing)

Wiretapping (sniffing)

Source Destination

Attacker in the Middle (active)

Source Destination Source Destination

Destination

Attacker in the Middle (passive)

Source

5

Web Attacker Capabilities

2/15/24 Web Security I 6

• Attacker controls malicious website
– Website might look professional, legitimate, etc.
– Attacker can get users to visit website (how?)

• Good website is compromised by attacker
– Attacker inserts malicious content into website
– Attacker steals sensitive data from website
– ... Attacker does not have direct access to

user's machine

Potential Damage

2/15/24 Web Security I 7

• An attacker gets you to visit a malicious
website
– Can they perform actions on other websites

impersonating you?
– Can they run evil code on your OS?

• Ideally, none of these exploits are possible ...

Attack Vectors

2/15/24 Web Security I 8

• Web browser (focus of this lecture)
– Renders web content (HTML pages, scripts)
– Responsible for confining web content
– Note: Browser implementations dictate what websites

can do
• Web applications

– Server code (PHP, Ruby, Python, …)
– Client-side code (JavaScript)
– Many potential bugs (which you’ll explore in Project 2 J)

Browser Security: Sandbox
• Goal: protect local computer from web attacker
– Safely execute code on a website
– … without the code accessing your files, tampering

with your network, accessing other sites
• High stakes ($40K bounty for Google Chrome ;

www.google.com/about/appsecurity/chrome-rewards/)
• We won't address attacks that break the sandbox
• But they happen check the CVE list
– https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sandbox
– https://support.apple.com/en-us/HT213635

2/15/24 Web Security I 9

https://chromereleases.googleblog.com/2022/02/stable-channel-update-for-desktop_14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0609

Domains, HTML and HTTP

2/15/24 Web Security I 10

URL and FQDN
• FQDN (Fully Qualified Domain Name)

• [Host name].[Domain].[TLD].[Root]

• Two or more labels, separated by
dots (e.g., cs.brown.edu)

• Root name server
It is a “.” at the end of the FQDN

• Top-level domain (TLD)
• Generic (gTLD), .com, .org, .net, …

• Country-code (ccTLD), .ca, .it, …

2/15/24 DoS, DNS, TLS 11

• URL Uniform Resource Locator

• https://cs.brown.edu/about/
contacts.html

• a protocol (e.g. https),
a FQDN (e.g. cs.brown.edu)

• a path and file name (e.g.
/about/contacts.html).

Domain Hierarchy
Root (.)

A brown.edu 128.148.128.180
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###

A cs.brown.edu 128.148.32.110
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###

A google.com 66.249.91.104
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########

google.com

resource records

...
... ...

A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########
A xxx.com ###########

A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########
A xxx.edu ###########

Amicrosoft.com 207.46.232.182
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########

A stanford.edu 171.67.216.18
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###

microsoft.com

com edu

brown.edu

cs.brown.edu

stanford.edu

15/02/24 12

HTML
• Hypertext markup

language (HTML)
– Allows linking to other

pages (href)
– Supports embedding of

images, scripts, other
pages (script, iframe)

– User input accepted in
forms

2/15/24 Web Security I 13

<html>
 <head>
 <title>Google</title>
 </head>
 <body>
 <p>Welcome to my page.</p>
 <script>alert(“Hello world”);
 </script>
 <iframe src=“http://example.com”>
 </iframe
 </body>
</html>

HTTP (Hypertext Transport Protocol)
• Communication protocol between client and server

2/15/24 Web Security I 14

Browser Server

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS) …
Content-Type: text/html
<html>
 <head>
 <title>Google</title>
 </head>
 <body>…</body>
</html>

What’s in a request (or response)?

2/15/24 Web Security I 15

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS) …
Content-Type: text/html
<html>
 <head>
 <title>Google</title>
 </head>
 <body>…</body>
</html>

URL (domain,
path)

REQUEST

Variables (name-value pairs)

Resource

Metadata
Header

RESPONSE

Variables
•Key-value pairs obtained

from user input into
forms and submitted to
server
• Submit variables in HTTP

via GET or PUT
•GET request: variables

within HTTP URL, e.g.,
http://www.google.com/
search?q=cs166&num=02

• POST request: variables
within HTTP body, e.g.,

POST / HTTP/1.1
Host: example.com
Content-Type:
application/x-www-form-
urlencoded
Content-Length: 18

month=5&year=2024

2/15/24 Web Security I 16

Semantics: GET vs. POST
•GET

–Request target resource
–Read-only method
–Submitted variables may

specify target resource
and/or its format

•POST
–Request processing of

target resource
–Read/write/create method
– Submitted variables may

specify how resource is
processed (e.g., content of
resource to be created,
updated, or executed)

2/15/24 Web Security I 17

GET vs. POST

18

GET POST
Browser history ✓ X
Browser bookmarking ✓ X
Browser caching ✓ X
Server logs ✓ X
Reloading page immediate warning
Variable values Restricted arbitrary

2/15/24 Web Security I

Moving from Browser Security to
Web Application Security:

Client-Side Controls
2/15/24 Web Security I 19

Client-Side Controls
•Web security problems arises because clients
can submit arbitrary input

•What about using client side
controls to check the input?
•Which kind of controls?

15/02/24 Web Security 20

Client-Side Controls
•A standard application may rely on client-side
controls to restrict user input in two general
ways:
•Transmitting data via the client component using a
mechanism that should prevent the user from
modifying that data
•Implementing measures on the client side

•In this model the Server does not trust the Client

Bypassing Web Client-Side Controls
•In general a security flaw because it is easy to bypass
•The user:
– has a full control over the client and the data it submits
–Can bypass any controls that are client-side and not
replicated on the server

•Why these controls are still useful?
–E.g. for load balancing or usability
–Often we can suppose that the vast majority of users are
honest

15/02/24 Web Security 22

Transmitting Data Via the Client
•A common developer bad habit is passing data to the client in a

form that the end user cannot directly see or modify
•Why is it so common?

–It removes or reduces the amount of data to store server side per-
session
–In a multi-server application it removes the need to synchronize the
session data among different servers
–The use of third-party components on the server may be difficult or
impossible to integrate

• Transmitting data via the client is often the easy solution but
unfortunately is not secure.

15/02/24 Web Security 23

Common Mechanisms
•HTML Hidden fields
–A field flagged hidden is not displayed on-screen

•HTTP Cookies
–Not displayed on-screen, and the user cannot modify directly

•Referer Header
–An optional field in the http request that it indicates the URL of
the page from which the current request originated

•If you use the proper tool you can tamper the data on the
client-side

15/02/24 Web Security 24

Web client tool
•Web inspection tool:

–Firefox or Chrome web developer:
•powerful tools that allow you to edit HTML, CSS
and view the coding behind any website: CSS,
HTML, DOM and JavaScript

•Web Proxy:
– Burp, OWASP ZAP, etc.
•Allow to modify GET or POST requests

15/02/24 Web Security 25

•An intercepting Proxy:
–inspect and modify traffic between your browser
and the target application

–Burp Intruder, OWASP ZAP, etc.

HTTP Proxy

Demos
•Owasp Webgoat
https://github.com/WebGoat/WebGoat

– parameter injection
–Bypass html field restrictions
–Exploit hidden fields
–Bypass client side java script validation

15/02/24 Web Security 27

BREAK!

5 4 3 2 1
2/15/24 Password Cracking 28

Web Intro

•Most of our trust on web security relies on information
stored in the Browser:
–A Browser should be updated since Bugs in the browser
implementation can lead to various attacks

https://us-cert.cisa.gov/ncas/current-activity/2023/02/14/mozilla-releases-
security-updates-firefox-110-and-firefox-esr

–Add-ons too are dangerous
–Hacking Team flash exploits - goo.gl/syVwiD
–github.com/greatsuspender/thegreatsuspender/issues/1263

–Executing a browser with low privileges helps

In BROWSER we trust…

Web Security 22/15/24 30

Browser Security: Same-Origin Policy
• Very simple idea: “Content from different origins should be

isolated”
– Website origin defined over tuple (protocol, domain, port)

• Very difficult to execute in practice…
– Messy number of cases to worry about…

• HTML elements?
• Navigating Links?
• Browser cookies?
• JavaScript capabilities?
• iframes?
• etc.

– Browsers didn’t always get this correct…

2/15/24 Web Security I 31

Browser Security: SOP
• Goal: Protect and isolate web content from other

web content
– Content from different origins should be isolated,

e.g., mal.com should not interact with bank.com in
unexpected ways

– What about cs.brown.edu vs brown.edu or
mail.google.com vs drive.google.com?

– Lots of subtleties

2/15/24 Web Security I 32

SOP Example:
http://store.company.com/dir/page.html

33Source: https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

(protocol, domain, port)

Cookies

2/15/24 Web Security I 34

Cookies
• HTTP is a stateless protocol; cookies used to emulate state
• Servers can store cookies (name-value pairs) into browser

• Used for user preferences (e.g., language and page layout),
user tracking, authentication

• Expiration date can be set
• May contain sensitive information (e.g., for user authentication)

• Browser sends back cookies to server on the next connection

2/15/24 Web Security I 35

POST /login.php HTTP/1.1
Set-Cookie: Name: sessionid

 Value: 19daj3kdop8gx
 Domain: cs.brown.edu
 Expires: Wed, 21 Feb 2024 …

Cookie Scope
• Each cookie has a scope

– Base domain, which is a given host (e.g., brown.edu)
– Plus, optionally, all its subdomains (cs.brown.edu,

math.brown.edu, www.cs.brown.edu , etc.)
• For ease of notation, we denote with . the inclusion

of subdomains (e.g., .brown.edu)
– This isn’t the real notation—it’s actually specified in HTTP
with the "Domain:" attribute of a cookie

2/15/24 Web Security I 36

Same Origin Policy: Cookie Reads
Websites can only read cookies within their scope

2/15/24 Web Security I 37

• Example: browser has
cookies with scope
brown.edu
.brown.edu,
.math.brown.edu
cs.brown.edu
.cs.brown.edu,
blog.cs.brown.edu

• Browser accesses
cs.brown.edu

• Browser sends cookies with
scope
.brown.edu
cs.brown.edu
.cs.brown.edu

Same Origin Policy: Cookie Writes
A website can set cookies for (1) its base domain; or
(2) a super domain (except TLDs) and its subdomains

2/15/24 Web Security I 38

• But not for
google.com
.com
math.brown.edu
brown.edu
…

• Browser accesses
cs.brown.edu

• cs.brown.edu can set
cookies for
.brown.edu
cs.brown.edu

Clicker Question #1
If the browser accesses cs.brown.edu, the server can set
cookies with which of the following scopes?
A. .brown.edu
B. only math.brown.edu
C. only help.cs.brown.edu
D. All of the above
E. None of the above

392/15/24 Web Security I

Answer Question #1
If the browser accesses cs.brown.edu, the server can set
cookies with which of the following scopes?
A. .brown.edu
B. only math.brown.edu
C. only help.cs.brown.edu
…
The scope is cs.brown.edu by default
The server can optionally set cookies with scope .cs.brown.edu and
.brown.edu, but nothing else

402/15/24 Web Security I

Session Management
• Session

– Keep track of client over a
series of requests

– Server assigns clients a
unique, unguessable ID

– Clients send back ID to verify
themselves

• Session
– Necessary in sites with

authentication (e.g., banking)
– Useful in most other sites

(e.g., remembering
preferences)

• Various methods to
implement them (mainly
cookies), but also could be
in HTTP variables

2/15/24 Web Security I 41

• Goal
– Users should not have to authenticate for every single request

• Problem
– HTTP is stateless

• Solution
– User logs in once
– Server generate session ID and gives it to browser

• Temporary token that identifies and authenticates user
– Browser returns session ID to server in subsequent requests

Session Management: goal

Web Security 22/15/24 42

Specifications for a Session ID
• Created by server upon successful user authentication

– Generated as long random string
– Associated with scope (set of domains) and expiration
– Sent to browser

• Kept as secret shared by browser and server
• Transmitted by browser at each subsequent request to server

– Must use secure channel between browser and server
• Session ID becomes invalid after expiration

– User asked to authenticate again

Web Security 22/15/24 43

Implementation of Session ID
• Cookie

– Transmitted in HTTP headers
– Set-Cookie: SID=c5Wuk7…
– Cookie: SID=c5Wuk7…

• GET variable
– Added to URLs in links
– https://www.example.com?SID=c5Wuk7…

• POST variable
– Navigation via POST requests with hidden variable
– <input type="hidden" name="SID" value="c5Wuk7…">

Web Security 22/15/24 44

Session ID in Cookie

Web Security 2

Browser ServerHTTP/1.1 200 OK
Set-Cookie: SID=c5Wuk7…;

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

GET /profile.html HTTP/1.1
Host: www.example.com
Cookie: SID=c5Wuk7…;

2/15/24 45

Session ID in Cookie
• Advantages

– Cookies automatically returned by browser
– Cookie attributes provide support for expiration, restriction to secure

transmission (HTTPS), and blocking JavaScript access (httponly)
• Disadvantages

– Cookies are shared among all browser tabs
• (not other browsers or incognito)

– Cookies are returned by browser even when request to server is made
from element (e.g., image or form) within page from other server

– This may cause browser to send cookies in context not intended by user

Web Security 22/15/24 46

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

Session ID in GET Variable

Web Security 2

Browser Server
HTTP/1.1 200 OK
<html>
…
<a href= /̎profile.html?SID=c5Wuk7… ̎
…

GET /profile.html?SID=c5Wuk7… HTTP/1.1
Host: www.example.com

2/15/24 47

Session ID in GET Variable
• Advantages

– Session ID transmitted to server only when intended by user
• Disadvantages

– Session ID inadvertently transmitted when user shares URL
– Session ID transmitted to third-party site within referrer
– Session ID exposed by bookmarking and logging
– Server needs to dynamically generate pages to customize site

navigation links and POST actions for each user
– Transmission of session ID needs to be restricted to HTTPS on every

link and POST action

Web Security 22/15/24 48

Session ID in POST Variable

Web Security 2

Browser Server

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

POST /profile HTTP/1.1
Host: www.example.com
SID=c5Wuk7…

HTTP/1.1 200 OK
…

<form … method="POST”
…
name="SID”
value=" c5Wuk7… "

HTTP/1.1 200 OK
…

<form method="POST”
action="…/profile"
name="SID”
value="c5Wuk7… "

2/15/24 49

Session ID in POST Variable
• Advantages

– Session ID transmitted to server only when intended by user
– Session ID not present in URL, hence not logged, bookmarked, or

transmitted within referrer
• Disadvantages

– Navigation must be made via POST requests
– Server needs to dynamically generate pages to customize forms for

each user
– Transmission of session ID needs to be restricted to HTTPS on every

link and POST action

Web Security 22/15/24 50

Clicker QuesUon 2
In the cookie implementation of session tokens, how is the
token transmitted to/from the server?

A. Included as a parameter in the URL
B. As a hidden variable in the initial POST request
C. As an additional field when the user authenticates
D. In the HTTP header (both request and response)

Web Security 22/15/24 51

Answer to Clicker Question 2
In the cookie implementation of session tokens, how is the
token transmitted to/from the server?

A. Included as a parameter in the URL
B. As a hidden variable in the initial POST request
C. As an additional field when the user authenticates
D. In the HTTP header (both request and response)

Web Security 22/15/24 52

1. Remove cookies or tampering parameters, and it erases authentication
– Server makes us log in again

2. Close session you do not remove server cookie
3. Logout and session cookie removed on server
4. Cookie stealing for authentication
5. Remember me checkbox on the login

– Cookie does not expire in the browser but also on the server
6. If we disable cookies, can not sign in to most websites
7. Burp analysis for the entropy of session cookies
Note: In particular for last demos, Browsers can have different policies

DEMO

Web Security 22/15/24 53

OWASP Top Ten (2013-17)

Web Security 2

OWASP 2013 -2017

Just OWASP 2017

2/15/24 54

Owasp 2017 - 2021

Web Security 22/15/24 55

www.owasp.org/index.php/Top_10

What We Have Learned
•Web Security Models
•Same-Origin Policy
•Basics of HTTP protocol
•GET and POST methods for HTTP variables
•Client-Side Controls
•Cookies and session management
•Same origin policy (SOP)

2/15/24 Web Security I 56

