
Cryptography III

Crypto Security and Authentication
CS 1660: Introduction to Computer

Systems Security

2/6/24 Cryptography III 1

Formalizing Encryption Security

2/6/24 2Cryptography III

• Alice and Bob are sending encrypted messages
to each other
– Adversary Eve can eavesdrop on those messages
– …and maybe do other things as well

• Security goal: protect confidentiality w.r.t. Eve
– Useful to formalize: What are Eve’s capabilities as an

adversary?

Crypto Adversary Models

2/6/24 Cryptography III 3

Eve

1. Ciphertext-only
– Eve sees all ciphertexts, but has no / vague information about the

underlying plaintext

2. Known plaintext
– Eve also knows part of plaintext messages
– How could this happen?

• All of your internet requests start with the same header
• Sending an order CSV in the same format every week
• You text “hi” to people when you first start texting them

(Weaker) Adversary Models

2/6/24 Cryptography III 4

3. Chosen plaintext
– Eve is able to encrypt plaintexts of Eve’s choosing and see the resulting

ciphertexts
– How can this happen?

• Eve sends Alice email spoofed from Alice’s boss saying “Please securely forward this to Bob”
• Public key cryptography
• Your dorm room has a router that you can send plaintexts to…

4. Chosen ciphertext
– Eve chooses ciphertexts and Alice reveals some info about the decryption
– Mostly not covered too much in course…unless you’re a CS1620/CS2660

student J

(Stronger) Adversary Models

2/6/24 Cryptography III 5

Threat modeling

2/6/24 Cryptography III 6

Ciphertext-only

Known plaintext

Chosen plaintext

Chosen ciphertext

• How do we show that our schemes are
secure against these different kinds of
attacker models?

• Intuitive definition: “No adversary can
reconstruct plaintext M from ciphertext C”
– This isn’t sufficient—what if adversary can

tell first letter of M, but nothing else?
• Satisfies the definition, but still a broken

scheme
• Adversary could still reconstruct other parts

of M based on what they know about its
format

– Need something stronger than this

Formalization

2/6/24 Cryptography III 7

• Goal: Cryptosystem should not
leak any information about M
– Idea: No adversary should be

able to distinguish between two
messages based on their
encryption

• We model ”security” of
encryption schemes as a game
– Played between a challenger (with

access to the encryption algorithm
and the secret key) and an
adversary

• ”Indistinguishability under
Chosen Plaintext Attack”

• Adversary has polynomially-
bounded access to an
encryption oracle
– If an adversary has access to

this kind of oracle, we say they
are an “IND-CPA adversary”

IND-CPA

2/6/24 Cryptography III 8

Challenger Adversary

𝑚!, 𝑚" (of equal length) with 𝑚! ≠ 𝑚"

Randomly pick 𝑚# ∈ 	 {𝑚!, 𝑚"}

𝑐′ = 𝐸𝑛𝑐$(𝑚#) 𝑐′

Output guess if 𝑖 = 1 or 𝑖 = 2

If adversary guessed correctly 𝑖, then
adversary wins.

If adversary’s probability of winning
the game is equal to ½, then our

scheme is “IND-CPA secure” (why ½?)

𝑚

𝑐 = 𝐸𝑛𝑐$(𝑚) 𝑐
Query
Phase

Challenge
Phase

Repeat as many
times as desired
polynomially

Generate a key 𝑘 = KeyGen()Setup
Phase

Is the Caesar cipher cryptosystem
IND-CPA secure?

What’s the adversary’s strategy in the IND-CPA game against Caesar?

• Setup phase: Not necessary
• Challenge phase: Send plaintexts “AB” and “AA”
– If output is in the form “XY” (where X != Y), then output “AB”
–Otherwise, output must be in form “XX”; then output “AA”

2/6/24 9Cryptography III

Is the one-time-pad cryptosystem
IND-CPA secure?

What’s the adversary’s strategy in the IND-CPA game against OTP?

• Setup phase: Send messages 𝑚!, 𝑚" to get 𝑐!, 𝑐"
• Challenge phase: Send plaintexts 𝑚!, 𝑚"; challenger returns 𝑐#
– If 𝑐! ⊕ 𝑐" = 0, then output 𝑐"
–Otherwise, it must be that 𝑐! ⊕ 𝑐# = 0, so output 𝑐#
–Why does this work?

2/6/24 10Cryptography III

Is the encryption function
𝐸𝑛𝑐$ 𝑚 = 1 IND-CPA secure?

Yes, but it’s not “correct”…

We also care about correctness—i.e. , that we can actually decrypt a
given encryption.

2/6/24 11Cryptography III

AUTHENTICATION IN CRYPTO

2/6/24 Cryptography III 12

Symmetric Encryption (recap)
• Same key is used for encryption and decryption
• Encryption and decryption algorithms are one the reverse of the other
• We need a secure channel to set up key

encrypt decrypt

ciphertext plaintextplaintext

Sender RecipientAttacker

Public Key Cryptography (recap)
Key pair
• Public key: shared with

everyone
• Secret key: kept secret, hard to

derive from the public key

2/6/24 Cryptography III 14

encrypt decrypt

ciphertext

plaintextplaintext

public key secret key

Sender RecipientAttacker

Protocol
• Sender encrypts using

recipient's public key
• Recipient decrypts using its

secret key

Authentication
• The goal is to confirm that the message came

from the original sender (authenticity) instead
of a fake source (spoofing)
– Like a seal on a letter

• Multiple ways to achieve this:
– MACs (Symmetric Crypto)
– Digital signatures (Asymmetric Crypto)

2/6/24 Cryptography III 15

Message Authentication Codes (MACs)

16Cryptography III
Sender Receiver

message

MAC

MAC
key

yes no

MAC message

• The sender wants to send a message and prove that it comes
from her (authenticity), without modifications (integrity)

MAC MAC
MAC

Algorithm
MACMAC

Algorithm

MAC
key =?

message

2/6/24

MAC Security Properties
• Unforgeability
– Even after seeing many MAC-message pairs, an

attacker cannot produce a valid MAC for a new
message

• Integrity
– If the MAC or the message is altered, the recipient

can detect it
2/6/24 Cryptography III 17

Issues in Implementing MACs
Block Ciphers
• CBC-MAC

– Using a block cipher in CBC
mode, encrypt a message and
use the last cipher block as a
MAC

– Requires some tweaks! You
must fix the IV, and you must
prepend each message with
its length

Cryptographic Hash Functions
• HMAC

– Use hash function and a
shared secret

– Theoretical construction:
• H(M||K)

– In practice:
• There are length extension

attacks require padding
schemes

• RFC 2104
182/6/24 Cryptography III

https://tools.ietf.org/html/rfc2104.html

Padding Oracle
Padding Oracle – an external device that tells you whether a given
block has valid padding or not (e.g. a server):

• Suppose I have a block of ciphertext that I want to send to a server.
• Server decrypts it using its crypto key, and obtains a plaintext
• Server checks, “Is this padding valid?”

– If yes, returns you “padding valid”
– If no “padding not valid”

2/6/24 Cryptography III 19

Padding Oracle Attack
• Attacker has two ciphertext blocks C[1], C[2] and

wants to decrypt the second block to get plaintext
P[2]

• Attacker changes the last byte of C[1] creating C’[1]
• Attacker sends C’[1], C[2] to server
• Server returns if P’[2] has a valid padding– If the server says padding no valid, the attacker changes

the last byte of C’[1]– How many possibilities? • 256
• When the server says padding valid, the attacker

knows that the last byte of
EK (C[2]) ⊕ C’[1] = 01 (because of the padding)

• You can iterate the same approach to obtain the
previous bytes

2/6/24 20Cryptography III

C[2]C[1]

P[2]

EK

C’[1]

P’[2]

Analysis
• Let’s suppose a block is 128 bits =16 bytes
• Attacker gets plaintext P[x] in at most 256⋅16 = 4096 = 212

attempts
• Much faster than 2128 attempts to brute force 128-bit key
• How do we get server to act like an oracle?
• Timing difference:

• If padding is invalid then server does not compute MAC
• If padding is valid then server computes MAC ⟹ it takes more time!

• Real attacks at TLS based on Padding Oracle, e.g. Poodle, Lucky13

2/6/24 Cryptography III 21

Authenticated Encryption with
Associated Data (AEAD)

Often, we need both Confidentiality and
Integrity in addition to Authentication
• How to do both?
• We add Associated Data to achieve this, but

there are some subtle challenges…

2/6/24 Cryptography III 22

MAC then Encrypt (MtE)
• E(Message || MAC(Message))
• Was used for secure web

connection - TLS (although with
special padding schemes)

• Does not provide integrity of
ciphertext, only plaintext

• Not proven to be secure in
general case (some exceptions
like TLS)
https://upload.wikimedia.org/wikipedia/commons/a/ac/Authenticated_Encryption_MtE.png

2/6/24 Cryptography III 23

MAC and Encrypt (M&E)
• (E(Message), MAC(Message))
• Can leak message equality even

if E() does not
– Unless you use the Key in

counter mode
• Does not provide integrity of

ciphertext, only plaintext
• Not proven to be secure (but

again, some variants are in SSH)
https://upload.wikimedia.org/wikipedia/commons/a/a5/Authenticated_Encryption_EaM.png

2/6/24 24Cryptography III

Encrypt then MAC (EtM)
• (E(Message), MAC(E(Message)))
• Integrity guarantee on both

ciphertext and plaintext
• Generally recommended order of

operations
• Proposed to replace MtE in TLS

(RFC 7366) and used in IPSEC
• You should use EtM! (We will see

more in last project…)
https://upload.wikimedia.org/wikipedia/commons/b/b9/Authenticated_Encryption_EtM.png

2/6/24 25Cryptography III

https://tools.ietf.org/html/rfc7366

More methods…
• Counter Mode uses an arbitrary number (the counter)

that changes with each block of text encrypted.
– Together with a unique IV (nonce) It allows parallelism in the

encryption.
• Galois/Counter Mode (GCM) is a block cipher mode that

uses hashing over a Galois field to provide authenticated
encryption and integrity verification.

• Why? Abstracts away details from programmer!
• Out of scope for this class, but now very common.

2/6/24 Cryptography III 26

BREAK!

5 4 3 2 1
2/6/24 Cryptography III 27

Digital Signatures

2/6/24 Cryptography III 28

Signatures: from Ink to Digital

2/6/24 Cryptography III 29

• Signature in the real
world
–Contracts
–Checks
–Job offers
–Affidavits

• Digital signatures are a matter
of both computer security and
law
• ESIGN Act (2000 US)
• eIDAS Regulation (2014 EU)
• Technological failures can have

legal consequences

What is a Digital Signature?

2/6/24 30Cryptography III

signature
algorithm

Alice BobSignature
key

message

signature

Alice

Verification
key

verification
algorithm

yes

no

Alice

signed message
• Alice wants to send a message and prove that it comes from her

Goals for a Digital Signature

2/6/24 Cryptography III 31

• Authenticity
–Binds an identity (signer)

to a message
–Provides assurance of the

signer
• Unforgeability
–An attacker cannot forge a

signature for a different
identity

• Nonrepudiation
–Signer cannot deny having

signed the message
• Integrity
–An attacker cannot take a

signature by Alice for a
message and create a
signature by Alice for a
different message

Digital Signatures in practice
• Use symmetric key encryption…

– Requires previous secure communication

– Only works with single recipient
• Can we use public key encryption?

Digital Signature with Public-Key
Encryption

2/6/24 33Cryptography III

“signing”
algorithm

Alice BobAlice’s secret
key SK

message M

signature
S = DSK (M)

Alice

Alice’s
public key

PK

“verification”
algorithm

signed message (M, S)

yes

no
=

EPK (S)

MM

Digital Signature with
Public-Key Encryption

2/6/24 Cryptography III 34

• In a public-key cryptosystem (e.g.,
RSA), we can often reverse the
order of encryption and decryption

EPK (DSK (M)) = M
• Alice “decrypts” plaintext message

M with the secret key and obtains a
digital signature on M

 sign(M, SK) {
 return S = DSK (M) }

• Knowing Alice’s public
key, PK, can verify the
validity of signature S on
M
• Bob “encrypts” signature

S with PK, and
• Checks if it the result is

message M
 verify(M, S, PK) {

 return (M == EPK
(S)) }

Signing Hashes

2/6/24 Cryptography III 35

• Basic method for public-
key digital signatures
–Signature as long as the

message
–Slow public-key

encryption/decryption
• Preferred method
–Sign a cryptographic hash

of the message
–Hash is short and fast to

compute

• Sign
S = DSK (h(M))

• Verify
h(M) == EPK (S)

• Security of signing hash
–Security of digital

signature
–Collision resistance of

hash function

Clicker Question (1)
Alice wants to increase the efficiency of her public-key digital
signature system by signing a cryptographic hash of each message
instead of the message itself. Given the decryption function D,
secret key SK, and message M, how can we represent Alice's digital
signature S on the hash of the message?

A. S = DSK(M)
B. S = DSK(h(M))

C. S = (h(M), DSK(M))
D. S = h(DSK(M))

Clicker Question (1) - Answer
Alice wants to increase the efficiency of her public-key digital
signature system by signing a cryptographic hash of each message
instead of the message itself. Given the decryption function D,
secret key SK, and message M, how can we represent Alice's digital
signature S on the hash of the message?

A. S = DSK(M)
B. S = DSK(h(M))

C. S = (h(M), DSK(M))
D. S = h(DSK(M))

Clicker Question (2)
Bob wants to send Alice an encrypted message. He found Alice’s
profile online, and it lists her public key, PK. How can Bob verify
that this is really Alice's public key?

A. Check whether EPK (DPK (M)) = M
B. Use PK to encrypt message M = “If you can decrypt this message, reply

with password MySecretPassword” and send it to the profile. Check
whether you get the correct password back.

C. Send a request to the profile asking for a message digitally signed with
the secret key corresponding to PK. Check whether the signature is valid.

D. None of the above

Clicker Question (2) - Answer
Bob wants to send Alice an encrypted message. He found Alice’s
profile online, and it lists her public key. How can Bob verify that this is
really Alice's public key?

ANSWER: D. None of the above.

Bob cannot use method A since he does not have the private key. Also,
it's unclear what message M would be in this method.

Methods B and C assure Bob that he is interacting with a party who has
possession of the private key corresponding to the posted public key.
However, they do not prove this party is Alice.

Send a message securely

2/6/24 Cryptography III 40

• Alice wants to send a message
that only Bob can read and that
only she can have sent.
• Requirements

– Confidentiality of all
communication

– Bob understands he is
communicating with Alice

• Message M needs to be
encrypted and digitally signed

• Active adversary, Eve
–Can eavesdrop and modify

messages
• Eve knows:
–PKAlice

–PKBob

 Alice

Alice Bob

Encrypt then Sign

2/6/24 Cryptography III 41

• Encrypt then sign
–Alice encrypts

C = E((M, PKBob))
–Alice signs CS=(C, SKAlice)
–Alice sends CS to Bob
–Bob verifies C=(Cs, PKAlice)

and decrypts C to (Cs,
SKBob)

• Attack
–Eve replace S with her signature

S' on CS’ and forwards (C, S') to
Bob

–Bob now thinks he is
communicating with Eve

–Eve can then forward Bob’s
response (intended for Eve) to
Alice

This is a subtle risk but it could
be dangerous

– during a transaction
– Authentication protocol
– …

Alice X Eve

Alice Bob

Sign then Encrypt

2/6/24 Cryptography III 42

• Sign then encrypt
–Alice signs MS=(M,

SKAlice)
–Alice encrypts

C = E((MS, PKBob))
–Alice sends C to Bob
–Bob decrypts C to (Ms,

SKBob) and verifies M=(Ms,
PKAlice)

• Attack
–Eve does not know SKBob
• She can not read M

–Eve does not know SKAlice
• She can not tamper M

This is the correct order

Alice

Alice Bob

Eve X

Relying on Public Keys

2/6/24 Cryptography III 43

• The verifier of a signature
must be assured that the
public key corresponds to
the correct party
• The signer should not be

able to deny the association
with the public key
• Public keys usually are

stored in browsers or in OS

• A trusted party could keep
and publish pairs (identity,
public key)
–Government?
–Private organizations?

• What if the private key is
compromised?
–Need for key revocation

mechanism

Practical Examples
SSH “Do you want to accept fingerprint (HASH) public key”

• TLS certificates (details much later in the course)

Authentication protocols

2/6/24 Cryptography III 45

How to authenticate two systems?

Identifier

Success / Failure
Client

Authentication
Server

2/6/24 46Cryptography III

Better Authentication

Identifier

Shared Secret KeyClient
Authentication

Server

2/6/24 47Cryptography III

Prove it?

Success / Failure

Even Better Authentication

Identifier

H(Shared Secret Key)Client
Authentication

Server

2/6/24 48Cryptography III

Prove it?

Success / Failure

Challenge-Response
• Use challenge-response, to prevent replay attack

– Goal is to avoid the reuse of the same credential

• Suppose Client wants to authenticate Server
– Challenge sent from Server to Client

• Challenge is chosen so that…
– Replay is not possible
– Only Client can provide the correct response
– Server can verify the response

2/6/24 49Cryptography III

Nonce
• To ensure “freshness”, can employ a nonce

– Nonce == number used once
• What to use for nonces?

– A unique random string
• What should the Client do with the nonce?

– Transform the nonce using the shared secret
• How can the Server verify the response?

– Server knows the shared secret and the nonce, so can check if the
response is correct

2/6/24 50Cryptography III

Challenge-Response

Identifier

H(Shared Secret Key, Nonce)Client
Authentication

Server

2/6/24 51Cryptography III

Nonce

Success / Failure

X

Authentication protocols

• Challenge response mainly relies on nonce

• What if nonce wasn’t random?

• Harder to authenticate humans, more on that later…

Summary
• Formalizing Encryption Security

– IND-CPA model
• Authentication in Crypot

– Message Authentication Codes
– CBC-MAC and HMAC
– Padding Oracle
– Authenticated Encryption with Associated Data (AEAD)

• Digital signature
– Authenticity, Unforgeability, Nonrepudiation, Integrity

• Challenge Response authentication

2/6/24 Cryptography III 53

