
Cryptography III

Crypto Security and Authentication
CS 1660: Introduction to Computer 

Systems Security
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Formalizing Encryption Security

2/6/24 2Cryptography III



• Alice and Bob are sending encrypted messages 
to each other
– Adversary Eve can eavesdrop on those messages
– …and maybe do other things as well

• Security goal: protect confidentiality w.r.t. Eve
– Useful to formalize: What are Eve’s capabilities as an 

adversary?

Crypto Adversary Models
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Eve



1. Ciphertext-only
– Eve sees all ciphertexts, but has no / vague information about the 

underlying plaintext

2. Known plaintext
– Eve also knows part of plaintext messages
– How could this happen?

• All of your internet requests start with the same header
• Sending an order CSV in the same format every week
• You text “hi” to people when you first start texting them

(Weaker) Adversary Models
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3. Chosen plaintext
– Eve is able to encrypt plaintexts of Eve’s choosing and see the resulting 

ciphertexts
– How can this happen?

• Eve sends Alice email spoofed from Alice’s boss saying “Please securely forward this to Bob”
• Public key cryptography
• Your dorm room has a router that you can send plaintexts to…

4. Chosen ciphertext
– Eve chooses ciphertexts and Alice reveals some info  about the decryption
– Mostly not covered too much in course…unless you’re a CS1620/CS2660 

student J

(Stronger) Adversary Models
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Threat modeling
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Ciphertext-only

Known plaintext

Chosen plaintext

Chosen ciphertext



• How do we show that our schemes are 
secure against these different kinds of 
attacker models?

• Intuitive definition: “No adversary can 
reconstruct plaintext M from ciphertext C”
– This isn’t sufficient—what if adversary can 

tell first letter of M, but nothing else?
• Satisfies the definition, but still a broken 

scheme
• Adversary could still reconstruct other parts 

of M based on what they know about its 
format

– Need something stronger than this

Formalization
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• Goal: Cryptosystem should not 
leak any information about M
– Idea: No adversary should be 

able to distinguish between two 
messages based on their 
encryption 

• We model ”security” of 
encryption schemes as a game
– Played between a challenger (with 

access to the encryption algorithm 
and the secret key) and an 
adversary



• ”Indistinguishability under 
Chosen Plaintext Attack”

• Adversary has polynomially-
bounded access to an 
encryption oracle 
– If an adversary has access to 

this kind of oracle, we say they 
are an “IND-CPA adversary”

IND-CPA
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Challenger Adversary

𝑚!, 𝑚" (of equal length) with 𝑚! ≠ 𝑚"

Randomly pick 𝑚# ∈ 	 {𝑚!, 𝑚"}

𝑐′ = 𝐸𝑛𝑐$(𝑚#) 𝑐′

Output guess if 𝑖 = 1 or 𝑖 = 2

If adversary guessed correctly 𝑖, then 
adversary wins.

If adversary’s probability of winning 
the game is equal to ½, then our 

scheme is “IND-CPA secure” (why ½?)

𝑚 

𝑐 = 𝐸𝑛𝑐$(𝑚) 𝑐
Query 
Phase

Challenge 
Phase

Repeat as many 
times as desired
polynomially

Generate a key 𝑘 = KeyGen()Setup 
Phase



Is the Caesar cipher cryptosystem 
IND-CPA secure?

What’s the adversary’s strategy in the IND-CPA game against Caesar?

• Setup phase: Not necessary
• Challenge phase: Send plaintexts “AB” and “AA”
– If output is in the form “XY” (where X != Y), then output “AB”
–Otherwise, output must be in form “XX”; then output “AA”
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Is the one-time-pad cryptosystem 
IND-CPA secure?

What’s the adversary’s strategy in the IND-CPA game against OTP?

• Setup phase: Send messages 𝑚!, 𝑚" to get 𝑐!, 𝑐"
• Challenge phase: Send plaintexts 𝑚!, 𝑚"; challenger returns 𝑐#
– If 𝑐! ⊕ 𝑐" = 0, then output 𝑐"
–Otherwise, it must be that 𝑐! ⊕ 𝑐# = 0, so output 𝑐#
–Why does this work?
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Is the encryption function 
𝐸𝑛𝑐$ 𝑚 = 1 IND-CPA secure?

Yes, but it’s not “correct”…

We also care about correctness—i.e. , that we can actually decrypt a 
given encryption.
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AUTHENTICATION IN CRYPTO
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Symmetric Encryption (recap)
• Same key is used for encryption and decryption
• Encryption and decryption algorithms are one the reverse of the other
• We need a secure channel to set up key

encrypt decrypt

ciphertext plaintextplaintext

Sender RecipientAttacker



Public Key Cryptography (recap)
Key pair
• Public key: shared with 

everyone
• Secret key: kept secret, hard to 

derive from the public key
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encrypt decrypt

ciphertext

plaintextplaintext

public key secret key

Sender RecipientAttacker

Protocol
• Sender encrypts using 

recipient's public key
• Recipient decrypts using  its 

secret key



Authentication
• The goal is to confirm that the message came 

from the original sender (authenticity) instead 
of a fake source (spoofing)
– Like a seal on a letter

• Multiple ways to achieve this:  
– MACs (Symmetric Crypto)
– Digital signatures (Asymmetric Crypto)
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Message Authentication Codes (MACs)
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Sender Receiver

message

MAC

MAC 
key

yes no

MAC message

• The sender wants to send a message and prove that it comes 
from her (authenticity), without modifications (integrity)

MAC MAC
MAC 

Algorithm
MACMAC 

Algorithm

MAC 
key =?

message
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MAC Security Properties 
• Unforgeability
– Even after seeing many MAC-message pairs, an 

attacker cannot produce a valid MAC for a new 
message

• Integrity 
– If the MAC or the message is altered, the recipient 

can detect it
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Issues in Implementing MACs
Block Ciphers
• CBC-MAC

– Using a block cipher in CBC 
mode, encrypt a message and 
use the last cipher block as a 
MAC

– Requires some tweaks! You 
must fix the IV, and you must 
prepend each message with 
its length 

Cryptographic Hash Functions
• HMAC

– Use hash function and a 
shared secret

– Theoretical construction:
• H(M||K)

– In practice: 
• There are length extension 

attacks require padding 
schemes

• RFC 2104
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https://tools.ietf.org/html/rfc2104.html


Padding Oracle
Padding Oracle – an external device that tells you whether a given 
block has valid padding or not (e.g. a server):

• Suppose I have a block of ciphertext that I want to send to a server.
• Server decrypts it using its crypto key, and obtains a plaintext
• Server checks, “Is this padding valid?”

– If yes, returns you “padding valid”
– If no “padding not valid”
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Padding Oracle Attack
• Attacker has two ciphertext blocks C[1], C[2] and 

wants to decrypt the second block to get plaintext 
P[2]

• Attacker changes the last byte of C[1] creating C’[1]
• Attacker sends C’[1], C[2] to server
• Server returns if P’[2] has a valid padding– If the server says padding no valid, the attacker changes 

the last byte of C’[1]– How many possibilities? • 256
• When the server says padding valid, the attacker 

knows that the last byte of  
EK (C[2]) ⊕ C’[1] = 01 (because of the padding)

• You can iterate the same approach to obtain the 
previous bytes
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C[2]C[1]

P[2]

EK

C’[1]

P’[2]



Analysis 
• Let’s suppose a block is 128 bits =16 bytes
• Attacker gets plaintext P[x]  in at most 256⋅16 = 4096 = 212 

attempts
• Much faster than 2128 attempts to brute force 128-bit key
• How do we get server to act like an oracle?
• Timing difference:

• If padding is invalid then server does not compute MAC
• If padding is valid then server computes MAC ⟹ it takes more time!

• Real attacks at TLS based on Padding Oracle, e.g. Poodle, Lucky13
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Authenticated Encryption with 
Associated Data (AEAD)

Often, we need both Confidentiality and 
Integrity in addition to Authentication
• How to do both?  
• We add  Associated Data to achieve this, but 

there are some subtle challenges…
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MAC then Encrypt (MtE)
• E(Message || MAC(Message))
• Was used for  secure web 

connection - TLS (although with 
special padding schemes)

• Does not provide integrity of 
ciphertext, only plaintext

• Not proven to be secure in 
general case (some exceptions 
like TLS)
https://upload.wikimedia.org/wikipedia/commons/a/ac/Authenticated_Encryption_MtE.png
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MAC and Encrypt (M&E)
• (E(Message), MAC(Message))
• Can leak message equality even 

if E() does not
– Unless you use the Key in 

counter mode
• Does not provide integrity of 

ciphertext, only plaintext 
• Not proven to be secure (but 

again, some variants are in SSH) 
https://upload.wikimedia.org/wikipedia/commons/a/a5/Authenticated_Encryption_EaM.png
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Encrypt then MAC (EtM)
• (E(Message), MAC(E(Message)))
• Integrity guarantee on both 

ciphertext and plaintext
• Generally recommended order of 

operations
• Proposed to replace MtE in TLS 

(RFC 7366) and used in IPSEC
• You should use EtM! (We will see 

more in last project…)
https://upload.wikimedia.org/wikipedia/commons/b/b9/Authenticated_Encryption_EtM.png
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More methods…
• Counter Mode uses an arbitrary number (the counter) 

that changes with each block of text encrypted. 
– Together with a unique IV (nonce) It allows parallelism in the 

encryption.
• Galois/Counter Mode (GCM) is a block cipher mode that 

uses hashing over a Galois field to provide authenticated 
encryption and integrity verification. 

• Why?  Abstracts away details from programmer!
• Out of scope for this class, but now very common.

2/6/24 Cryptography III 26



BREAK!

5 4 3 2 1
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Digital Signatures
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Signatures: from Ink to Digital
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•  Signature in the real 
world
–Contracts
–Checks
–Job offers
–Affidavits

• Digital signatures are a matter 
of both computer security and 
law 
• ESIGN Act (2000 US)
• eIDAS Regulation (2014 EU)
• Technological failures can have 

legal consequences



What is a Digital Signature?

2/6/24 30Cryptography III

signature 
algorithm

Alice BobSignature 
key

message

signature

Alice

Verification 
key

verification 
algorithm

yes

no

Alice

signed message
• Alice wants to send a message and prove that it comes from her



Goals for a Digital Signature
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• Authenticity
–Binds an identity (signer) 

to a message
–Provides assurance of the 

signer
• Unforgeability
–An attacker cannot forge a 

signature for a different 
identity

• Nonrepudiation
–Signer cannot deny having 

signed the message
• Integrity
–An attacker cannot take a 

signature by Alice for a 
message and create a 
signature by Alice for a 
different message



Digital Signatures in practice
• Use symmetric key encryption…

– Requires previous secure communication

– Only works with single recipient
• Can we use public key encryption?



Digital Signature with Public-Key 
Encryption
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“signing” 
algorithm

Alice BobAlice’s secret 
key SK

message M

signature 
S = DSK (M)

Alice

Alice’s 
public key 

PK

“verification” 
algorithm

signed message (M, S)

yes

no
=

EPK (S)

MM



Digital Signature with 
Public-Key Encryption
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• In a public-key cryptosystem (e.g., 
RSA), we can often reverse the 
order of encryption and decryption

EPK (DSK (M)) = M
• Alice “decrypts” plaintext message 

M with the secret key and obtains a 
digital signature on M

 sign(M, SK) {
   return S = DSK (M) }

• Knowing Alice’s public 
key, PK, can verify the 
validity of signature S on 
M
• Bob “encrypts” signature 

S with PK, and
• Checks if it the result is 

message M
 verify(M, S, PK) {

     return (M == EPK 
(S) ) }



Signing Hashes
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• Basic method for public-
key digital signatures
–Signature as long as the 

message
–Slow public-key 

encryption/decryption
• Preferred method
–Sign a cryptographic hash 

of the message
–Hash is short and fast to 

compute

• Sign
S = DSK (h(M))

• Verify
h(M) == EPK (S)

• Security of signing hash
–Security of digital 

signature
–Collision resistance of 

hash function



Clicker Question (1)
Alice wants to increase the efficiency of her public-key digital 
signature system by signing a cryptographic hash of each message 
instead of the message itself. Given the decryption function D, 
secret key SK, and message M, how can we represent Alice's digital 
signature S on the hash of the message?

A.  S = DSK(M)
B.  S = DSK(h(M))

C.  S = (h(M), DSK(M))
D.  S = h(DSK(M))



Clicker Question (1) - Answer
Alice wants to increase the efficiency of her public-key digital 
signature system by signing a cryptographic hash of each message 
instead of the message itself. Given the decryption function D, 
secret key SK, and message M, how can we represent Alice's digital 
signature S on the hash of the message?

A.  S = DSK(M)
B.  S = DSK(h(M))

C.  S = (h(M), DSK(M))
D.  S = h(DSK(M))



Clicker Question (2)
Bob wants to send Alice an encrypted message. He found Alice’s 
profile online, and it lists her public key, PK.  How can Bob verify 
that this is really Alice's public key?

A. Check whether EPK (DPK (M)) = M
B. Use PK to encrypt message M = “If you can decrypt this message, reply 

with password MySecretPassword” and send it to the profile. Check 
whether you get the correct password back.

C. Send a request to the profile asking for a message digitally signed with 
the secret key corresponding to PK. Check whether the signature is valid.

D. None of the above



Clicker Question (2) - Answer
Bob wants to send Alice an encrypted message. He found Alice’s 
profile online, and it lists her public key.  How can Bob verify that this is 
really Alice's public key?

ANSWER: D. None of the above.

Bob cannot use method A since he does not have the private key. Also, 
it's unclear what message M would be in this method.

Methods B and C assure Bob that he is interacting with a party who has 
possession of the private key corresponding to the posted public key. 
However, they do not prove this party is Alice.



Send a message securely
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• Alice wants to send a message 
that only Bob can read and that 
only she can have sent.
• Requirements

– Confidentiality of all 
communication

– Bob understands he is 
communicating with Alice

• Message M needs to be 
encrypted and digitally signed

• Active adversary, Eve
–Can eavesdrop and modify 

messages
• Eve knows:
–PKAlice

–PKBob

 Alice

Alice Bob



Encrypt then Sign
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• Encrypt then sign
–Alice encrypts 

C = E((M, PKBob))
–Alice  signs CS=(C, SKAlice)
–Alice sends CS to Bob
–Bob verifies C=(Cs, PKAlice) 

and decrypts C to (Cs, 
SKBob) 

• Attack
–Eve replace S with her signature 

S' on CS’ and forwards (C, S') to 
Bob

–Bob now thinks he is 
communicating with Eve

–Eve can then forward Bob’s 
response (intended for Eve) to 
Alice

This is a subtle risk but it could 
be  dangerous 

– during a transaction
– Authentication protocol
– …

Alice X Eve

Alice Bob



Sign then Encrypt
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• Sign then encrypt
–Alice  signs MS=(M, 

SKAlice)
–Alice encrypts 

C = E((MS, PKBob))
–Alice sends C to Bob
–Bob decrypts C to (Ms, 

SKBob) and verifies M=(Ms, 
PKAlice)

• Attack
–Eve does not know SKBob
• She can not read M

–Eve does not know SKAlice
• She can not tamper M

This is the correct order

Alice

Alice Bob

Eve X



Relying on Public Keys
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• The verifier of a signature 
must be assured that the 
public key corresponds to 
the correct party
• The signer should not be 

able to deny the association 
with the public key
• Public keys usually are 

stored in browsers or in OS

• A trusted party could keep 
and publish pairs (identity, 
public key)
–Government?
–Private organizations?

• What if the private key is 
compromised?
–Need for key revocation 

mechanism



Practical Examples
SSH “Do you want to accept fingerprint (HASH) public key” 

• TLS certificates (details much later in the course)



Authentication protocols
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How to authenticate two systems?

Identifier

Success / Failure
Client

Authentication
Server
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Better Authentication

Identifier

Shared Secret KeyClient
Authentication

Server
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Prove it?

Success / Failure



Even Better Authentication

Identifier

H(Shared Secret Key)Client
Authentication

Server
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Prove it?

Success / Failure



Challenge-Response
• Use challenge-response, to prevent replay attack

– Goal is to avoid the reuse of the same credential 

• Suppose Client wants to authenticate Server
– Challenge sent from Server to Client

• Challenge is chosen so that… 
– Replay is not possible
– Only Client can provide the correct response
– Server can verify the response

2/6/24 49Cryptography III



Nonce
• To ensure “freshness”, can employ a nonce

– Nonce == number used once 
• What to use for nonces?

– A unique random string 
• What should the Client do with the nonce?

– Transform the nonce using the shared secret
• How can the Server verify the response?

– Server knows the shared secret and the nonce, so can check if the 
response is correct
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Challenge-Response 

Identifier

H(Shared Secret Key, Nonce)Client
Authentication

Server
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Nonce

Success / Failure

X



Authentication protocols

• Challenge response mainly relies on nonce

• What if nonce wasn’t random? 

• Harder to authenticate humans, more on that later…



Summary
• Formalizing Encryption Security

– IND-CPA model
• Authentication in Crypot

– Message Authentication Codes
– CBC-MAC and HMAC
– Padding Oracle
– Authenticated Encryption with Associated Data (AEAD)

• Digital signature
– Authenticity, Unforgeability, Nonrepudiation, Integrity

• Challenge Response authentication
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