
Cryptography II

Encryption in practice

2/1/24 1Cryptography II

Why do we use
Bitwise XOR?

2/1/24 Cryptography I 2

X Y X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

Instead AND or OR?
X Y X ∧ Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X ∨ Y
0 0 0
0 1 1
1 0 1
1 1 1

Block Ciphers

2/1/24 Cryptography II 3

Block Cipher

2/1/24 Cryptography II 4

• A block cipher is a symmetric
encryption scheme for messages
(blocks) of a given fixed length
– The length of the block is independent

from the length of the key

• AES is a block cipher that operates
on blocks of 128 bits (16 bytes)
– AES supports keys of length 128,

192, and 256 bits

plaintext
128 bits 128 bits

AES

key
128, 192 or 256 bits

ciphertext

ECB Mode

2/1/24 Cryptography II 5

• When plaintext is longer than block size, b
– Partition plaintext P into sequence of m blocks

P[0], …, P[m−1], where n/b ≤ m < n/b + 1

• Electronic Code Book (ECB) Mode
– Assume n is multiple of b
– Block P[i] encrypted into ciphertext block

C[i] = EK(P[i])

• Documents and images are not
suitable for ECB
• Zoom ECB case (2020)1

• ECB works well with random
strings

• Encryption can be done in parallel

Source of images: Tux the Penguin created
by Larry Ewing <lewing@isc.tamu.edu>
with The GIMP and derived encrypted
image by Lunkwill. Downloaded from
https://en.wikipedia.org/wiki/Block_cipher
_mode_of_operation

1: https://citizenlab.ca/2020/04/move-fast-
roll-your-own-crypto-a-quick-look-at-the-
confidentiality-of-zoom-meetings/

CBC Mode
• Cipher Block Chaining (CBC) Mode
– Previous ciphertext block combined with current plaintext block

C[i] = EK (C[i −1] ⊕ P[i])
– C[−1] = V is a random block (initialization vector) sent encrypted during setup
– To ensure that identical plaintexts encrypt to different ciphertexts, it's

essential to use an initialization vector.

2/1/24 6Cryptography II

EK

P[0]

EK

P[1]

EK

P[2]

EK

P[3]

V

C[0] C[1] C[2] C[3]

CBC Mode Properties

• Works well with any input plaintext
• Requires the reliable transmission of all blocks

– Not suitable for applications that allow packet losses
– E.g., audio and video streaming

2/1/24 7Cryptography II

Source of images: Tux the Penguin created by Larry Ewing <lewing@isc.tamu.edu> with The GIMP and derived
encrypted images by Lunkwill. Downloaded from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Padding (PKCS #7)

2/1/24 Cryptography II 8

• Block ciphers require the length n of the
plaintext to be a multiple of the block
size b

• Padding is the operation of filling the
last block

• How to pad unambiguously the last
block?

• We can use all zeros .
– Problematic if the last character in the

original block was already a zero

• Public-Key Cryptography
Standards(PKCS) #7 an RSA lab
standard

• Example for b = 128 (16 bytes)
– Plaintext: “Bernardo” (7 bytes)
– Padded plaintext:

“Bernardo999999999” (16 bytes),
where 9 denotes the number of
bytes necessary for padding and
not the character

Clicker Question (1)

2/1/24 9Cryptography II

Clicker Question (1) - Answer

•

2/1/24 10Cryptography II

EK

P[0]

EK

P[1]

V

C[0] C[1]

Stream Ciphers

2/1/24 Cryptography II 11

Stream Cipher

2/1/24 Cryptography II 12

• Key stream
– Pseudo-random bit sequence

generated from a secret key K
SK = SK[0], SK[1], SK[2], …

– Generated on-demand, one bit (or
block) at the time

• Stream cipher
– XOR the plaintext with the key

stream C[i] = SK[i] ⊕ P[i]

plaintext

⊕ ciphertext

key stream

key

keystream
generator

Stream Cipher

2/1/24 Cryptography II 13

• Advantages
– Fixed-length secret key
– Plaintext can have arbitrary

length (e.g., media stream)
– Works for packets sent over

an unreliable channel

• Disadvantages
– Key stream cannot be reused
– Synchronization of

plaintext/ciphertext with key
stream

– Sharing the key

Attacks on Stream Ciphers

2/1/24 Cryptography II 14

• Repetition attack
– Stream reuse yields XOR of

plaintexts
– Cryptanalysis can recover the

original plaintexts

• Replacement attack
– The attacker knows a certain

portion of the plaintext P
– P = A B C, where the attacker

knows B
– From the ciphertext of P, the

attacker can derive the
ciphertext of Q = A D C, where
D is an arbitrary message
chosen by the attacker

Initialization Vector

2/1/24 Cryptography II 15

• Goal
– Avoid sharing a new secret key

for each stream encryption
• Solution
– Use a two-part key (U, V)
– Part U is fixed
– Part V is transmitted together

with the ciphertext
– V is called initialization vector

• Setup
– Alice and Bob share secret U

• Encryption
– Alice picks V and creates key

K = (U, V)
– Alice creates stream ciphertext C

and sends (V, C)
• Decryption

– Bob reconstructs key K = (U, V)
– Bob decrypts the message

Clicker Question (2)

• Which of the following is NOT true regarding block and stream
ciphers?

A. A block cipher operates on a fixed size plaintext, while a stream
cipher can operate on any length plaintext

B. Block ciphers are more secure than stream ciphers
C. Both block and stream ciphers use symmetric keys, meaning

there is a shared secret key used for both encryption and
decryption

D. Initialization vectors can be used with BOTH block and stream
ciphers

2/1/24 16Cryptography II

Clicker Question (2) - Answer

• Which of the following is NOT true regarding block and stream
ciphers?

A. A block cipher operates on a fixed size plaintext, while a stream
cipher can operate on any length plaintext

B. Block ciphers are more secure than stream ciphers
C. Both block and stream ciphers use symmetric keys, meaning

there is a shared secret key used for both encryption and
decryption

D. Initialization vectors can be used with BOTH block and stream
ciphers

2/1/24 17Cryptography II

Public Key Cryptography

2/1/24 Cryptography II 18

The problem of Key Distribution
• In symmetric Encryption

distinct keys need to be set up
for each pair of
communicating users

• Quadratic number of keys
for pairwise communication

2/1/24 Cryptography I 19

Public Key Cryptography
Key pair
• Public key: shared with

everyone
• Secret key: kept secret, hard to

derive from the public key

2/1/24 Cryptography II 20

encrypt decrypt

ciphertext

plaintextplaintext

public key secret key

Sender RecipientAttacke
r

Protocol
• Sender encrypts using

recipient's public key
• Recipient decrypts using its

secret key

Intuition
• Alice

– Buys padlock
– Keeps key
– Sends open padlock to Bob

• Bob
– Locks message with Alice’s padlock
– Sends locked message to Alice

• Alice
– Opens padlock with key

• No keys are exchanged
• Alice can share identical open

padlocks with multiple people

2/1/24 Cryptography II 21

Public-Key Encryption in Formulas

2/1/24 Cryptography II 22

• Notation
– PK: public key of recipient
– SK: secret key of recipient
– M: plaintext
– C: ciphertext

• Encryption
– C = EPK (M)
– The sender encrypts the

plaintext with the public
key of the recipient

• Decryption
– M = DSK (C)
– The recipient decrypts the ciphertext with

their private key
• Properties

– Anyone can encrypt a message since the
recipient openly shares the public key

– Only the recipient can decrypt the message
since the private key is kept secret

– It should be unfeasible to derive the secret
key from the public key

Properties

• Advantages
– A single public-secret key pair

allows receiving confidential
messages from multiple parties

• Disadvantages
– Conceptually complex
– Slower performance than

symmetric cryptography

2/1/24 Cryptography II23

RSA
• Developed by Rivest, Shamir, and

Adleman (1978)
• RSA patent expired in 2000
• 2048-bit (or longer) keys recommended
• Much slower than AES
• Typically used to encrypt an AES symmetric

key
• In 1973, Clifford Cocks and James Ellis

developed an equivalent system at GCHQ,
declassified in 1997

2/1/24 Cryptography II24

Image used with permission from Ron Rivest
and Len Adleman

Image source:
The Royal
Society

Image source:
The Telegraph

Clicker Question (3)
Which of the following is NOT true regarding the RSA public-key
cryptosystem?

A. The sender encrypts the plaintext using the recipient’s public key, and
the recipient decrypts the ciphertext using their secret key

B. Often used to encrypt an AES symmetric key for further secure
communication

C. Slower in performance than the AES symmetric cryptosystem
D. Requires a different public-secret key pair for each distinct party from

whom you wish to receive confidential messages

2/1/24 25Cryptography II

Clicker Question (3) - Answer

ANSWER: D
Requires a different public-secret key pair for each distinct party from
whom you wish to receive confidential messages [Wrong!]

One person can use the same public-secret key pair to communicate
with multiple parties—they share the same public key with each
person that they are communicating with, and decrypt every message
with their own secret key. This is an advantage over symmetric
encryption, which requires a distinct key for every pair of users.

2/1/24 26Cryptography II

Asymmetric Crypto Systems

2/1/24 27Cryptography II

Algorithm Year Message Size Limitations Performance Tradeoffs
Diffie-Hellman 1976 No direct use in encryption Fast key exchange

RSA 1977 Limited by key size (e.g.
2048 or 4096 bits)

High security but slower,
for larger key sizes.

Elliptic Curve
Cryptography
(ECC)

1985
Smaller key sizes
compared to RSA (e.g.,
256 bits)

Faster and more efficient
with smaller keys, but
implementation can be
complex.

ElGamal 1985 Limited by key size, similar
to RSA

Offers high security but
less efficient than RSA

DSA (Digital
Signature
Algorithm)

1991 Primarily used for digital
signatures, not encryption

Faster for signing but
slower for verification
compared to RSA.

2/1/24 28Cryptography II

Characteristic Symmetric Encryption Asymmetric Encryption

Use Cases Ideal for encrypting large amounts
of data

Often used for secure key exchange,
digital signatures, and short strings

Key Length Shorter key lengths are often
sufficient (e.g., 128 or 256 bits).

Requires longer key lengths to maintain
security (e.g., 2048 bits or more).

Computational
Resources Requires less computational power. More computationally intensive.

Security Security depends on the secrecy of
the key. Key distribution is an issue.

Provides a higher level of security,
especially for key distribution.

Scalability
Less scalable due to the need for
key management for each pair of
users.

More scalable in environments with
numerous users.

Data in transit
and at rest

Commonly used for encrypting data
in transit and data at rest

Used for exchanging the secure key for
symmetric encryption.

Symmetric vs. Asymmetric

BREAK!

5 4 3 2 1

Formalizing Encryption Security

2/1/24 31Cryptography III

• Alice and Bob are sending encrypted messages to each other
– Adversary Eve can eavesdrop on those messages
– …and maybe do other things as well

• Security goal: protect confidentiality w.r.t. Eve
– Useful to formalize: What are Eve’s capabilities as an adversary?

Adversary Models

2/1/24 Cryptography III 32

Eve

Threat modeling

2/1/24 Cryptography III 33

Ciphertext-only

Known plaintext

Chosen plaintext

Chosen ciphertext

1. Ciphertext-only
– Eve sees all ciphertexts, but has no / vague information about the

underlying plaintext
2. Known plaintext

– Eve also knows part of / format of plaintext messages
– How could this happen?

• All of your internet requests start with the same header
• Sending a order CSV in the same format every week
• You text “hi” to people when you first start texting them

– Open design principle

(Weaker) Adversary Models

2/1/24 Cryptography III 34

3. Chosen plaintext
– Eve is able to encrypt plaintexts of Eve’s choosing and see the resulting

ciphertexts
– How can this happen?

• Eve sends Alice email spoofed from Alice’s boss saying “Please securely forward this to Bob”
• Public key cryptography
• Your dorm room at the CREWMATE ACADEMY has a router that you can send plaintexts to…

4. Chosen ciphertext
– Eve chooses ciphertexts and Alice reveals some info about the decryption
– Mostly not covered too much in course…unless you’re a CS1620/CS2660

student J

(Stronger) Adversary Models

2/1/24 Cryptography III 35

• How do we show that our schemes are
secure against these different kinds of
attacker models?

• Intuitive definition: “No adversary can
reconstruct plaintext M from ciphertext C”
– This isn’t sufficient—what if adversary can

tell first letter of M, but nothing else?
• Satisfies the definition, but still a broken

scheme
• Adversary could still reconstruct other parts

of M based on what they know about its
format

– Need something stronger than this

Formalization

2/1/24 Cryptography III 37

• Goal: Cryptosystem should not
leak any information about M
– Idea: No adversary should be

able to distinguish between two
messages based on their
encryption

• We model ”security” of
encryption schemes as a game
– Played between a challenger (with

access to the encryption algorithm
and the secret key) and an
adversary

• ”Indistinguishability under
Chosen Plaintext Attack”

• Adversary has polynomially-
bounded access to an
encryption oracle
– If an adversary has access to this

kind of oracle, we say they are an
“IND-CPA adversary”)

IND-CPA

2/1/24 Cryptography III 38

Challenger Adversary

𝑚!, 𝑚" (of equal length) with 𝑚! ≠ 𝑚"

Randomly pick 𝑚# ∈	 {𝑚!, 𝑚"}

𝑐′ = 𝐸𝑛𝑐$(𝑚#) 𝑐′

Output guess if 𝑖 = 1 or 𝑖 = 2

If adversary guessed correct 𝑖, then
adversary wins.

If adversary’s probability of winning
the game is equal to ½, then our

scheme is “IND-CPA secure” (why ½?)

𝑚

𝑐 = 𝐸𝑛𝑐$(𝑚) 𝑐
Query
Phase

Challenge
Phase

Repeat as many
times as desired
polynomially

Generate a key 𝑘 = KeyGen()Setup
Phase

Taking a step back: Integrity

2/1/24 Cryptography III 39

Telephone game

• Who knows the telephone game?
• What is the goal?
• Integrity

– Ensuring that data is not altered or tampered with during storage,
transmission, or processing.

– This means that the data received at the destination is exactly the
same as the data sent by the source.

2/1/24 Cryptography III 40

Hash Functions
• A hash function transforms

• an input message or file of arbitrary length
• into a fixed-length output value (e.g., 256 bits) called hash value

• A collision occurs when two distinct messages have the
same hash value
– Inevitable because there are more inputs than outputs
– If two hashes are different, the inputs are different
– The converse is not true

Cryptographic Hash Functions

• Short output
– The hash value has small fixed length (e.g., 256 or 512 bits)

• One-way
– It is hard to find a message with a given hash value

• Collision resistance
– Given a message, it is hard to find a different message with the same

hash value

Cryptographic Hash Functions

2/1/24 Cryptography I 43

• Cryptographic hash function
– Hash function with special

properties
– Not all properties always required
– Public function, no secrets

• Only feasible attack to break a
property is brute-force search
– Length of hash value should be at

least 256 bits (32 bytes)

• One-way
– Given a hash value x, it is hard to find

a plaintext P such that h(P) = x

• Weak collision resistance
– Given a plaintext P, it is hard to find a

plaintext Q such that h(Q) = h(P)

• Strong collision resistance
– It is hard to find a pair of plaintexts P

and Q such that h(Q) = h(P)
– Birthday Paradox

Hashing People to Birthdays

• Define the birthday hash function as the mapping of a
person to the month and date of birth (e.g., August 15)
– 366 possible hash values

• Birthday paradox…
– Suppose there are N students in a classroom
– To be sure that at least two students have the same birthday N

must be at least 367
– How many people have the same birthday in this classroom?

(DEMO)

01/02/24 Cryptography 44

Demo: Birthday survey

• Enter your birthday here:
https://forms.gle/rDwsU1wjdncDA1856
(Link also on lectures page of website)

• If you don’t want to enter your
birthday, just pick any random date

01/02/24 Cryptography 45

https://forms.gle/rDwsU1wjdncDA1856

Birthday Paradox
1.0

Pr
ob
ab
lit
y

0.0

0.5

People
10 20 30 40 50 60

01/02/24 Cryptography 46

Probability that two people were
born on the same day of the year

Hash Functions vs. Hash table

2/1/24 Cryptography I 47

• Hash function
– Function h mapping plaintext P to

fixed-length value x = h(P), called
hash value or digest of P

– Should take time proportional to
length of plaintext

• Collision
– Pair of plaintexts P and Q that map

to the same hash value, h(P) = h(Q)

– Collisions are unavoidable

• Hash table
– Widely used data structure
– Stores items into locations

associated with hash values
– Chaining or open addressing

deal with collisions
– Constant expected search time

if hash function spreads items
uniformly

Applications

2/1/24 Cryptography I 48

• File integrity
– Alice stores her files on a cloud

server managed by Bob
– She later retrieves the files
– How can she make sure the

files were not corrupted?
– She wants something more

efficient than keeping a copy of
all her files

• Solution
– Alice computes and keeps a

crypto hash for each file
– Security ensured by weak

collision resistance
– Efficient scheme since Alice

stores short hashes (e.g., 32
bytes) instead of files

Applications

2/1/24 Cryptography I 49

• Password authentication
– How to authenticate users

without storing passwords?
– We want to avoid server

breach to leak passwords
– We want to defend against

password-guessing attacks

• Solution
– Store crypto hash of

password but not the
password

– One-way makes it difficult to
recover password from hash

– Weak collision resistance
makes it hard to guess other
password with same hash

In Practice

2/1/24 Cryptography I 50

• Practical hash functions
– Functions widely believed

to perform in practice like
a cryptographic hash
function

– No mathematical proof
that they satisfy the three
properties

– No significant attacks
– Standardized by NIST

• MD5 (128 bits)
– Developed by Ron Rivest (1991)
– Considered insecure, do NOT use

• SHA-1 or RIPEMD160 (160 bits)
– SHA-1 NIST 1995
– RIPEMD Developed by Hans Dobbertin, Antoon

Bosselaers and Bart Preneel (1996)
• SHA-2: different lengths (224, 256, 384, 512 bits)
– Developed by the NSA (2002)

• SHA-3: Keccack (different number of bits)
– Developed by Guido Bertoni, Joan Daemen, Michaël

Peeters, and Gilles Van Assche (2011)
– Won SHA-3 Competition (11/2/2007 – 10/2/2012)
– Not widely used

Let’s try together
• Practicing with different hashes
– www.tools4noobs.com/online_tools/hash/

• Two different images same hash:
– https://www.hacksandsecurity.org/posts/two-images-have-same-md5-

hash-md5-collision-example
– https://github.com/sunjw/fhash

2/1/24 Cryptography I 51

Clicker Question (Th:821033)

Bob.com authenticates users by storing a cryptographic hash of
each user's password in a server-side database. Which property
of hash functions is most important when protecting against an
attacker who has direct access to the password database?

A. One-way
B. Weak collision resistance
C. Strong collision resistance
D. All of the above

2/1/24 Cryptography I 52

Clicker Question - Answer

Bob.com authenticates users by storing a cryptographic hash of
each user's password in a server-side database. Which property
of hash functions is most important when protecting against an
attacker who has direct access to the password database?

A. One-way
B. Weak collision resistance
C. Strong collision resistance
D. All of the above

2/1/24 Cryptography I 53

Summary

• Entropy
• Block ciphers
• Stream ciphers
• Public Key Cryptography

2/1/24 54Cryptography II

