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Encryption in practice
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Why do we use 
Bitwise XOR?
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X Y X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

Instead AND  or OR?
X Y X ∧ Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X ∨ Y
0 0 0
0 1 1
1 0 1
1 1 1



Block Ciphers
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Block Cipher
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• A block cipher is a symmetric 
encryption scheme for messages 
(blocks) of a given fixed length
– The length of the block is independent 

from the length of the key

• AES is a block cipher that operates 
on blocks of 128 bits (16 bytes)
– AES supports keys of length 128, 

192, and 256 bits

plaintext
128 bits 128 bits

AES

key
128, 192 or 256 bits

ciphertext



ECB Mode
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• When plaintext is longer than block size, b
– Partition plaintext P into sequence of m blocks

P[0], …, P[m−1],  where n/b ≤ m < n/b + 1

• Electronic Code Book (ECB) Mode
– Assume n is multiple of b
– Block P[i] encrypted into ciphertext block 

C[i] = EK(P[i])

• Documents and images are not 
suitable for ECB
• Zoom ECB case (2020)1

• ECB works well with random 
strings

• Encryption can be done in parallel

Source of images: Tux the Penguin created 
by Larry Ewing <lewing@isc.tamu.edu> 
with The GIMP and derived encrypted 
image by Lunkwill. Downloaded from 
https://en.wikipedia.org/wiki/Block_cipher
_mode_of_operation

1: https://citizenlab.ca/2020/04/move-fast-
roll-your-own-crypto-a-quick-look-at-the-
confidentiality-of-zoom-meetings/



CBC Mode
• Cipher Block Chaining (CBC) Mode
– Previous ciphertext block combined with current plaintext block 

C[i] = EK (C[i −1] ⊕ P[i])
– C[−1] = V is a random block (initialization vector) sent encrypted during setup
– To ensure that identical plaintexts encrypt to different ciphertexts, it's 

essential to use an initialization vector.
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EK

P[0]

EK

P[1]

EK

P[2]

EK

P[3]

V

C[0] C[1] C[2] C[3]



CBC Mode Properties

• Works well with any input plaintext
• Requires the reliable transmission of all blocks

– Not suitable for applications that allow packet losses
– E.g., audio and video streaming
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Source of images: Tux the Penguin created by Larry Ewing <lewing@isc.tamu.edu> with The GIMP and derived 
encrypted images by Lunkwill. Downloaded from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation



Padding (PKCS #7) 
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• Block ciphers require the length n of the 
plaintext to be a multiple of the block 
size b

• Padding is the operation of filling the 
last block

• How to pad unambiguously the last 
block?

• We can use all zeros .
– Problematic if the last character in the 

original block was already a zero

• Public-Key Cryptography 
Standards(PKCS) #7 an RSA lab 
standard

• Example for b = 128 (16 bytes)
– Plaintext: “Bernardo” (7 bytes)
– Padded plaintext: 

“Bernardo999999999” (16 bytes), 
where 9 denotes the number of 
bytes necessary for padding and 
not the character



Clicker Question (1)
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Clicker Question (1) - Answer

•
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EK

P[0]

EK

P[1]

V

C[0] C[1]



Stream Ciphers
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Stream Cipher
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• Key stream
– Pseudo-random bit sequence 

generated from a secret key K
SK = SK[0], SK[1], SK[2], …

– Generated on-demand, one bit (or 
block) at the time

• Stream cipher
– XOR the plaintext with the key 

stream C[i] = SK[i] ⊕ P[i]

plaintext

⊕ ciphertext

key stream

key

keystream 
generator



Stream Cipher
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• Advantages
– Fixed-length secret key
– Plaintext can have arbitrary 

length (e.g., media stream)
– Works for packets sent over 

an unreliable channel

• Disadvantages
– Key stream cannot be reused
– Synchronization of 

plaintext/ciphertext with  key 
stream

– Sharing the key



Attacks on Stream Ciphers
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• Repetition attack
– Stream reuse yields XOR of 

plaintexts
– Cryptanalysis can recover the 

original plaintexts

• Replacement attack 
– The attacker knows a certain 

portion of the plaintext P
– P = A B C, where the attacker 

knows B
– From the ciphertext of P, the 

attacker can derive the 
ciphertext of Q = A D C, where 
D is an arbitrary message 
chosen by the attacker



Initialization Vector
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• Goal
– Avoid sharing a new secret key 

for each stream encryption
• Solution
– Use a two-part key (U, V)
– Part U is fixed
– Part V is transmitted together 

with the ciphertext
– V is called initialization vector

• Setup
– Alice and Bob share secret U

• Encryption
– Alice picks V and creates key 

K = (U, V)
– Alice creates stream ciphertext C 

and sends (V, C)
• Decryption

– Bob reconstructs key K = (U, V)
– Bob decrypts the message

  



Clicker Question (2)

• Which of the following is NOT true regarding block and stream 
ciphers?

A. A block cipher operates on a fixed size plaintext, while a stream 
cipher can operate on any length plaintext

B. Block ciphers are more secure than stream ciphers
C. Both block and stream ciphers use symmetric keys, meaning 

there is a shared secret key used for both encryption and 
decryption

D. Initialization vectors can be used with BOTH block and stream 
ciphers
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Clicker Question (2) - Answer

• Which of the following is NOT true regarding block and stream 
ciphers?

A. A block cipher operates on a fixed size plaintext, while a stream 
cipher can operate on any length plaintext

B. Block ciphers are more secure than stream ciphers
C. Both block and stream ciphers use symmetric keys, meaning 

there is a shared secret key used for both encryption and 
decryption

D. Initialization vectors can be used with BOTH block and stream 
ciphers
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Public Key Cryptography
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The problem of Key Distribution
• In symmetric Encryption 

distinct keys need to be set up 
for each pair of 
communicating users

• Quadratic number of keys 
for pairwise communication
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Public Key Cryptography
Key pair
• Public key: shared with 

everyone
• Secret key: kept secret, hard to 

derive from the public key
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encrypt decrypt

ciphertext

plaintextplaintext

public key secret key

Sender RecipientAttacke
r

Protocol
• Sender encrypts using 

recipient's public key
• Recipient decrypts using  its 

secret key



Intuition
• Alice

– Buys padlock
– Keeps key
– Sends open padlock to Bob

• Bob
– Locks message with Alice’s padlock
– Sends locked message to Alice

• Alice
– Opens padlock with key

• No keys are exchanged
• Alice can share identical open 

padlocks with multiple people
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Public-Key Encryption in Formulas
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• Notation
– PK: public key of recipient
– SK: secret key of recipient
– M: plaintext
– C: ciphertext

• Encryption
– C =  EPK (M)
– The sender encrypts the 

plaintext with the public 
key of the recipient

• Decryption
– M = DSK (C)
– The recipient decrypts the ciphertext with 

their private key
• Properties

– Anyone can encrypt a message since the 
recipient openly shares the public key

– Only the recipient can decrypt the message 
since the private key is kept secret

– It should be unfeasible to derive the secret 
key  from the public key



Properties

• Advantages
– A single public-secret key pair 

allows receiving confidential 
messages from multiple parties

• Disadvantages
– Conceptually complex
– Slower performance than 

symmetric cryptography
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RSA
• Developed by Rivest, Shamir, and 

Adleman (1978) 
• RSA patent expired in 2000
• 2048-bit (or longer) keys recommended
• Much slower than AES
• Typically used to encrypt an AES symmetric 

key
• In 1973, Clifford Cocks and James Ellis 

developed an equivalent system at GCHQ, 
declassified in 1997 
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Image used with permission from Ron Rivest
and Len Adleman

Image source: 
The Royal 
Society

Image source: 
The Telegraph



Clicker Question (3)
Which of the following is NOT true regarding the RSA public-key 
cryptosystem?

A. The sender encrypts the plaintext using the recipient’s public key, and 
the recipient decrypts the ciphertext using their secret key

B. Often used to encrypt an AES symmetric key for further secure 
communication

C. Slower in performance than the AES symmetric cryptosystem
D. Requires a different public-secret key pair for each distinct party from 

whom you wish to receive confidential messages
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Clicker Question (3) - Answer

ANSWER: D
Requires a different public-secret key pair for each distinct party from 
whom you wish to receive confidential messages [Wrong!]

One person can use the same public-secret key pair to communicate 
with multiple parties—they share the same public key with each 
person that they are communicating with, and decrypt every message 
with their own secret key. This is an advantage over symmetric 
encryption, which requires a distinct key for every pair of users.
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Asymmetric Crypto Systems
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Algorithm Year Message Size Limitations Performance Tradeoffs
Diffie-Hellman 1976 No direct use in encryption Fast key exchange

RSA 1977 Limited by key size (e.g. 
2048 or 4096 bits)

High security but slower, 
for larger key sizes.

Elliptic Curve 
Cryptography 
(ECC)

1985
Smaller key sizes 
compared to RSA (e.g., 
256 bits)

Faster and more efficient 
with smaller keys, but 
implementation can be 
complex.

ElGamal 1985 Limited by key size, similar 
to RSA

Offers high security but 
less efficient than RSA

DSA (Digital 
Signature 
Algorithm)

1991 Primarily used for digital 
signatures, not encryption

Faster for signing but 
slower for verification 
compared to RSA.
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Characteristic Symmetric Encryption Asymmetric Encryption

Use Cases Ideal for encrypting large amounts 
of data

Often used for secure key exchange, 
digital signatures, and short strings

Key Length Shorter key lengths are often 
sufficient (e.g., 128 or 256 bits).

Requires longer key lengths to maintain 
security (e.g., 2048 bits or more).

Computational 
Resources Requires less computational power. More computationally intensive.

Security Security depends on the secrecy of 
the key. Key distribution is an issue.

Provides a higher level of security, 
especially for key distribution.

Scalability
Less scalable due to the need for 
key management for each pair of 
users.

More scalable in environments with 
numerous users.

Data in transit 
and at rest

Commonly used for encrypting data 
in transit and data at rest

Used for exchanging the secure key for 
symmetric encryption.

Symmetric vs. Asymmetric



BREAK!

5 4 3 2 1



Formalizing Encryption Security
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• Alice and Bob are sending encrypted messages to each other
– Adversary Eve can eavesdrop on those messages
– …and maybe do other things as well

• Security goal: protect confidentiality w.r.t. Eve
– Useful to formalize: What are Eve’s capabilities as an adversary?

Adversary Models
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Eve



Threat modeling
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Ciphertext-only

Known plaintext

Chosen plaintext

Chosen ciphertext



1. Ciphertext-only
– Eve sees all ciphertexts, but has no / vague information about the 

underlying plaintext
2. Known plaintext

– Eve also knows part of / format of plaintext messages
– How could this happen?

• All of your internet requests start with the same header
• Sending a order CSV in the same format every week
• You text “hi” to people when you first start texting them

– Open design principle

(Weaker) Adversary Models
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3. Chosen plaintext
– Eve is able to encrypt plaintexts of Eve’s choosing and see the resulting 

ciphertexts
– How can this happen?

• Eve sends Alice email spoofed from Alice’s boss saying “Please securely forward this to Bob”
• Public key cryptography
• Your dorm room at the CREWMATE ACADEMY has a router that you can send plaintexts to…

4. Chosen ciphertext
– Eve chooses ciphertexts and Alice reveals some info  about the decryption
– Mostly not covered too much in course…unless you’re a CS1620/CS2660 

student J

(Stronger) Adversary Models
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• How do we show that our schemes are 
secure against these different kinds of 
attacker models?

• Intuitive definition: “No adversary can 
reconstruct plaintext M from ciphertext C”
– This isn’t sufficient—what if adversary can 

tell first letter of M, but nothing else?
• Satisfies the definition, but still a broken 

scheme
• Adversary could still reconstruct other parts 

of M based on what they know about its 
format

– Need something stronger than this

Formalization
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• Goal: Cryptosystem should not 
leak any information about M
– Idea: No adversary should be 

able to distinguish between two 
messages based on their 
encryption

• We model ”security” of 
encryption schemes as a game
– Played between a challenger (with 

access to the encryption algorithm 
and the secret key) and an 
adversary



• ”Indistinguishability under 
Chosen Plaintext Attack”

• Adversary has polynomially-
bounded access to an 
encryption oracle 
– If an adversary has access to this 

kind of oracle, we say they are an 
“IND-CPA adversary”)

IND-CPA
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Challenger Adversary

𝑚!, 𝑚" (of equal length) with 𝑚! ≠ 𝑚"

Randomly pick 𝑚# ∈	 {𝑚!, 𝑚"}

𝑐′ = 𝐸𝑛𝑐$(𝑚#) 𝑐′

Output guess if 𝑖 = 1 or 𝑖 = 2

If adversary guessed correct 𝑖, then 
adversary wins.

If adversary’s probability of winning 
the game is equal to ½, then our 

scheme is “IND-CPA secure” (why ½?)

𝑚 

𝑐 = 𝐸𝑛𝑐$(𝑚) 𝑐
Query 
Phase

Challenge 
Phase

Repeat as many 
times as desired
polynomially

Generate a key 𝑘 = KeyGen()Setup 
Phase



Taking a step back:  Integrity
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Telephone game

• Who knows the telephone game?
• What is the goal?
• Integrity

– Ensuring that data is not altered or tampered with during storage, 
transmission, or processing. 

– This means that the data received at the destination is exactly the 
same as the data sent by the source.

2/1/24 Cryptography III 40



Hash Functions
• A hash function transforms

• an input message or file of arbitrary length
• into a fixed-length output value (e.g., 256 bits) called hash value

• A collision occurs when two distinct messages have the 
same hash value
– Inevitable because there are more inputs than outputs
– If two hashes are different, the inputs are different
– The converse is not true



Cryptographic Hash Functions

• Short output
– The hash value has small fixed length (e.g., 256 or 512 bits)

• One-way 
– It is hard to find a message with a given hash value

• Collision resistance
– Given a message, it is hard to find a different message with the same 

hash value



Cryptographic Hash Functions
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• Cryptographic hash function 
– Hash function with special 

properties 
– Not all properties always required
– Public function, no secrets

• Only feasible attack to break a 
property is brute-force search
– Length of hash value should be at 

least 256 bits  (32 bytes)

• One-way
– Given a hash value x, it is hard to find 

a plaintext P such that h(P) = x

• Weak collision resistance
– Given a plaintext P, it is hard to find a 

plaintext Q such that h(Q) = h(P)

• Strong collision resistance
– It is hard to find a pair of plaintexts P 

and Q such that h(Q) = h(P)
– Birthday Paradox 



Hashing People to Birthdays

• Define the birthday hash function as the mapping of a 
person to the month and date of birth (e.g., August 15)
– 366 possible hash values

• Birthday paradox…
– Suppose there are N students in a classroom
– To be sure that at least two students have the same birthday N 

must be at least 367
– How many people have the same birthday in this classroom? 

(DEMO)
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Demo:  Birthday survey

• Enter your birthday here:
https://forms.gle/rDwsU1wjdncDA1856
(Link also on lectures page of website)

• If you don’t want to enter your 
birthday, just pick any random date
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https://forms.gle/rDwsU1wjdncDA1856


Birthday Paradox
1.0
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10 20 30 40 50 60
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Probability that two people were 
born on the same day of the year



Hash Functions vs. Hash table
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•  Hash function 
– Function h mapping plaintext P to 

fixed-length value x = h(P), called 
hash value or digest of P

– Should take time proportional to 
length of plaintext

• Collision 
– Pair of plaintexts P and Q that map 

to the same hash value, h(P) = h(Q)

– Collisions are unavoidable

• Hash table
– Widely used data structure
– Stores items into locations 

associated with hash values
– Chaining or open addressing 

deal with collisions
– Constant expected search time 

if hash function spreads items 
uniformly



Applications
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• File integrity
– Alice stores her files on a cloud 

server managed by Bob
– She later retrieves the files
– How can she make sure the 

files were not corrupted?
– She wants something more 

efficient than keeping a copy of 
all her files

• Solution
– Alice computes and keeps a 

crypto hash for each file
– Security ensured by weak 

collision resistance
– Efficient scheme since Alice 

stores short hashes (e.g., 32 
bytes) instead of files



Applications
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• Password authentication
– How to authenticate users 

without storing passwords? 
– We want to avoid server 

breach to leak passwords
– We want to defend against 

password-guessing attacks

• Solution
– Store crypto hash of 

password but not the 
password

– One-way makes it difficult to 
recover password from hash

– Weak collision resistance 
makes it hard to guess other 
password with same hash



In Practice

2/1/24 Cryptography I 50

• Practical hash functions
– Functions widely believed 

to perform in practice like 
a cryptographic hash 
function

– No mathematical proof 
that they satisfy the three 
properties 

– No significant attacks
– Standardized by NIST

• MD5 (128 bits)
– Developed by Ron Rivest (1991)
– Considered insecure, do NOT use

• SHA-1 or RIPEMD160 (160 bits)
– SHA-1 NIST 1995
– RIPEMD Developed by Hans Dobbertin, Antoon 

Bosselaers and Bart Preneel (1996)
• SHA-2: different lengths (224, 256, 384, 512 bits)
– Developed by the NSA (2002)

• SHA-3: Keccack (different number of bits)
– Developed by Guido Bertoni, Joan Daemen, Michaël 

Peeters, and Gilles Van Assche (2011)
– Won SHA-3 Competition (11/2/2007 – 10/2/2012)
– Not widely used



Let’s try together
• Practicing with different hashes
– www.tools4noobs.com/online_tools/hash/

• Two different images same hash:
– https://www.hacksandsecurity.org/posts/two-images-have-same-md5-

hash-md5-collision-example
– https://github.com/sunjw/fhash
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Clicker Question (Th:821033)

Bob.com authenticates users by storing a cryptographic hash of 
each user's password in a server-side database. Which property 
of hash functions is most important when protecting against an 
attacker who has direct access to the password database?

A. One-way
B. Weak collision resistance
C. Strong collision resistance
D. All of the above
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Clicker Question - Answer

Bob.com authenticates users by storing a cryptographic hash of 
each user's password in a server-side database. Which property 
of hash functions is most important when protecting against an 
attacker who has direct access to the password database?

A. One-way
B. Weak collision resistance
C. Strong collision resistance
D. All of the above
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Summary

• Entropy
• Block ciphers
• Stream ciphers
• Public Key Cryptography
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