Bernardo Palazzi

• Brown experiences:
 – In 2007, started collaborating with Brown University.
 – Founder and Academic Director of Brown Executive Master in Cyber Security.
 – Founder and former DGS of Master of Science in Cyber Security.
 – Co-chair of the Strategic Planning Committee for the Cyber Master.

Other professional experiences:
 – Advisor for Capacity and Competence Development at the Italian National Cybersecurity Agency (ACN), similar to CISA and NSA in the US.
 – As the First Data Protection Officer (DPO), oversaw privacy regulation for the whole population at the Italian National Institute of Statistics.
 – Managed the computer security of the first online population census.
 – Founder and CTO of a cloud data security startup based on an international patent based on my PhD thesis.
Security Goals

Confidentiality

Availability

Integrity
Attacks on Communication
Standard Communication

Sender

sent message

communication channel

Recipient

received message
Eavesdropping

sent message

read

received message

Sender

Attacker

Recipient
Tampering

sent message

modify

received message

Sender

Attacker

Recipient
Blocking

sent message

drop

received message

Sender

Attacker

Recipient
Cryptography

- Cryptography provides methods for assuring the confidentiality and integrity of data that is
 - transmitted over communication channels (e.g., web pages and email messages)
 - stored on devices (e.g., files on a laptop or data center)
Open Design Principle

- Publicly available system architecture and algorithms
- Security relies solely on keeping keys secret
- Formulated by Auguste Kerckhoffs in 1883
- Opposite of “security by obscurity”
- Claude Shannon in 1949 said "the enemy knows the system":

 "one ought to design systems under the assumption that the enemy will immediately gain full familiarity with them"

Encrypted Communication

plaintext → encrypt → ciphertext → decrypt → plaintext

Sender → encryption key → Attacker → decryption key → Recipient
Encryption

- Encryption allows to secure communication
 - Originally focused on confidentiality alone

- The encryption algorithm combines the plaintext with the encryption key to produce the ciphertext
 - The ciphertext is transmitted instead of the plaintext

- The decryption algorithm combines the ciphertext with the decryption key to return the plaintext
 - Only the intended recipient should have the secret key

- Encryption and decryption should be computationally infeasible without the corresponding keys
Symmetric Encryption

- Same key is used for encryption and decryption
- Encryption and decryption algorithms are one the reverse of the other
- We need a **secure channel** to set up key

plaintext \rightarrow **encrypt** \rightarrow ciphertext \rightarrow **decrypt** \rightarrow plaintext

Sender \rightarrow **Attacker** \rightarrow **Recipient**
Classic Symmetric Encryption
Julius Caesar's Cipher

• Encryption
 – replace A with D
 – replace B with E
 – replace C with F
 – ...
 – replace X with A
 – replace Y with B
 – replace Z with C
• Encryption key
 – Forward alphabet shift: +3
• Decryption key
 – Reverse alphabet shift: −3

Image source:
Alphabet Shift Cipher

• Generalization of Caesar's cipher
• Replace each character c of the plaintext with the character \(k \) positions after c in the alphabet
• Key for encryption and decryption: number \(k \)
• Insecure encryption method
• Can be easily cracked by trying all possible values of \(k \) between 1 and the size of the alphabet
Substitution Cipher

• Arbitrary *permutation* of the characters
 – A → K
 – B → T
 – C → G
 – ...

• Key: permutation of the alphabet characters (e.g., KTG ...)
• Number of possible keys for a 26-character alphabet ≈ 4×10^{26}
• Unfeasible to try all possible keys but ...
• Can be cracked by *frequency analysis*
 – most frequent letters in English: e, t, o, a, n, i, ...
 – most frequent digrams: th, in, er, re, an, ...
 – most frequent trigrams: the, ing, and, ion, ...
• Attack first described in a 9th century book by al-Kindi
Frequency Analysis

Example from 1/30/24 Cryptography I

Image source: https://simonsingh.net

PCQ VMJYPD LBYK LYSO KBXBJXWXV BXV ZCJPO EYPD KBXBJYUXJ LBJOO KCPK. CP LBO LBCMKXVP XPV IYJKL PYDBL, QBOP KBO BXV OPVOV LBO LXRO CI SX‘XJMI, KBO JCKO XPV EYKKOV LBO DJCMPV ZOICJO BYS, KXUYPD: “DJOXL EYPD, ICJ X LBCMKXVP XPV CPO PYDBLK Y BXNO ZOOP JOACMPLYPD LC UCM LBO IXZROK CI FXKL XDOK XPV LBO RODOPVK CI XPAYOPL EYPDk. SXU Y SXEO KC ZCRV XK LC AJXNO X IXNCMJ CI UCMJ SXGOKLU?” OFYRCDMO, LXROK IJCS LBO LBCMKXVP XPV CPO PYDBLK
Letter Frequencies Graph

First guess
• LBO ➔ THE
Frequency Analysis (cont.)

PCQ VMJYPD THYK TYSE KHXHJXWXV HXV ZCJPE EYPD KHXHJYUXJ THJEE KCPK. CP THE THCMKXJPV XPV IYJKT PYDHT, QHEP KHE HXV EPVEV THE TXRE CI SX'XJMI, KHE JCKE XPV EYKKEV THE DJCMPV ZEICJE HYS, KXUYPD: “DJEXT EYPD, ICI X THCMKXPV XPV CPE PYDHTK Y HXNE ZEEP JECAMPTYPD TC UCM THE IXZREK CI FXKT XDEK XPV THE REDEPVK CI XPAYEPT EYPDK. SXU Y SXEE KC ZCRV XK TC AJXNE X IXNCMJ CI UCMJ SXGKJTU?”

EFYRCDME, TXREK IJCS THE THCMKXPV XPV CPE PYDHTK

L → T
B → H
O → E
More guesses
J → R
K → S
X → A

1/30/24 Cryptography I
Frequency Analysis (cont.)

PCQ VMRPD THYS TYSE SHAHRAWAV
HAV ZCRPE EYPD SHAHRYUAR THREE
SCPS. CP THE THCMSAPV APV IYRST
PYDHT, QHEP SHE HAV EPVEV THE TARE CI
SA'ARMI, SHE RCSE APV EYSSEV THE
DRCMPV ZEICRE HYS, SAUYPD: “DREAT
EYPD, ICR A THCMSAPV APV CPE PYDHTS Y
HANE ZEEP REACMPTYPD TC UCM THE
IAZRES CI FAST ADES APV THE REDEPVS CI
APAYEPT EYPDS. SAU Y SAAE SC ZCRV AS TC
ARANE A IANCMR CI UCMR SAGESTU?”

EFYRCDME, TARES IRCS THE THCMSAPV
APV CPE PYDHTS

L → T
B → H
O → E
J → R
K → S
X → A

1/30/24

Cryptography I
Decryption

PCQ VMJYPD LBYK LYSO KBXBJXWXV BXV ZCJPO EYPD KBXBJYUXJ LBJOO KCPK. CP LBO LBCMKXPV XPV IYJKL PYDBL, QBOP KBO BXV OPVOV LBO LXRO CI SX'XJMI, KBO JCKO XPV EYKKOV LBO DJCMPV ZOICJO BYS, KXUYPD: “DJOXL EYPD, ICJ X LBCMKXPV XPV CPO PYDBLK Y BXNO ZOOP JOACMPLYPD LC UCM LBO IXZROK CI FXKL XDOK XPV LBO RODOPVK CI XPAYOPL EYPDK. SXU Y SXEO KC ZCRV XK LC AJXNO X IXNCMJ CI UCMJ SXGOKLU?” OFYRCDMO, LXROK IJCS LBO LBCMKXPV XPV CPO PYDBLK

Now during this time Shahrazad had borne king Shahriyar three sons. On the thousand and first night, when she had ended the tale of Ma'aruf, she rose and kissed the ground before him, saying: “great king, for a thousand and one nights I have been recounting to you the fables of past ages and the legends of ancient kings. May I make so bold as to crave a favour of your majesty?”

Epilogue, Tales from the Thousand and One Nights
Clicker Question (TopHat: 821033)
Clicker Question

• Bob is experimenting with different symmetric encryption schemes to securely communicate with Alice
• To test his knowledge, he decides to encrypt the plaintext “HELLO WORLD” using an alphabet shift cipher, where $k = 4$
• Which of the following ciphertexts is correct?
 a. KHOOR ZRUOG
 b. MHPOS ARVPH
 c. LIQQR WRVOH
 d. LIPPS ASVPH
Clicker Question

Answer: D

HELLO WORLD

+4

LIPPS ASVPH
Symmetric Encryption:
The modern era
Symmetric Encryption Algorithms

Two different approaches for symmetric key encryption

Stream cipher:
1. Generate a sequence of bits (keystream)
2. Combine the keystream with plaintext (e.g. **XOR**)
3. Create a ciphertext stream
 - If the entire keystream is random and used only once, is a One-Time Pad (OTP)

Block cipher:
1. Take a fixed-length block of plaintext
2. Create a block of ciphertext of the same length
 - Generally, the keys are reused
 - It is more common
Stream cipher: One-Time Pad
Bitwise XOR

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>X ⊕ Y</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
One-Time Pad (~Vernam Cipher)

- **Key**
 - Sequence of random bits
 - Same length as plaintext

- **Encryption**
 - \(C = K \oplus P \)
 - Example
 - \(P = 01101001 \)
 - \(K = 10110010 \)
 - \(C = 11011011 \)

- **Decryption**
 - \(P = K \oplus C \)

- **Advantages**
 - Each bit of the cyphertext is random
 - **Fully secure** if key used only once (e.g., Beale’s treasure)

- **Disadvantages**
 - Key as large as plaintext
 - Difficult to generate and share
 - Key cannot be reused
Demo: Pitfalls with One-Time Pads
Imperfect Randomness

Source: Justin Bisignano and Joshua Liebow-Feesper
Key Reuse

Source: Cryptosmith and David Lowry-Duda, Cryptography Stack Exchange
Block ciphers
Confusion and Diffusion

Two properties of the operation of a secure cipher, defined by Claude Shannon in 1949 - Communication Theory of Secrecy Systems

• **Confusion** seeks to make the relationship between the **key** and the **ciphertext** as complex and difficult as possible
 – It typically involves **substituting one element for another** (e.g. Caesar Cipher, Vigenère Cipher)

• **Diffusion** aims to **dissipate** the redundancy in the statistics of the **plaintext** in the statistics of the **ciphertext**
 – This ensures that changing one character of the **plaintext** results in **multiple changes in the ciphertext** (e.g. transposition, permutation)
Confusion: Vigenère Cipher (Polyalphabetic)

This is a type of substitution cipher
• Invented by Blaise de Vigenère in 19th
• The algorithm is polyalphabetic
 – Where the secret key is repeated along the length of plaintext/ciphertext
 – The same letter in plain text could be encrypted with different letters in cipher text

Plaintext: CYBERISAWESOME
Keyword: BROWN BROWN BROWN
Ciphertext: DPPAEJJOSRTFAA
Symmetric Encryption at War

Vigenere Cipher
(American Civil War)

Navajo Code
(WW II US vs Japan)

Enigma machine
(WW II Nazi vs. Allies)
A substitution cipher with a period of 16,900 characters

"It was thanks to Ultra that we won the war."

Winston Churchill

Alan Turing decrypted under the project ‘Ultra’
The Dawn of the Digital Era for the civilian sector

• In 1959, the integrated circuit was invented, and private organizations, particularly banks, started to use computers.
• Security has become more and more critical for relevant transactions between different.
• Different companies could use proprietary crypto schemes that the receivers should have implemented for decryption.
• Standardization was necessary to allow easy communication between different parties.
• In 1973, the National Bureau of Standards (NBS), now NIST, invited researchers to propose a cryptographic candidate for the protection of sensitive, unclassified electronic government data.
The call for a Data Encryption Standard (DES)

The algorithm must:

- provide a high level of security.
- be completely specified and easy to understand.
- be available to all users.
- be adaptable for use in diverse applications.
- be economically implementable in electronic devices.
- be efficient to use.
- be able to be validated.
- be exportable.

The security of the algorithm must reside in the key; the security should not depend on the secrecy of the algorithm.
Transposition Cipher

• Instead of replacing the characters with other characters, this cipher alters the order of the characters.

• The key determines the positions that the characters are moved to
 – Instead of a list of alphabetic substitutions, it is a mapping order
 – Such as $(1, 2, 3, 4, 5, 6) = (6, 1, 5, 3, 4, 2)$
 – Example: CS1660 -> 0C616S
Permutation

• The permutation of this cipher runs in the rows and then in the columns of a matrix.
• This means that the message is spread out into a matrix.

• Example: I LOVE CS1660 COURSE ON CYBER

ILOVEC S1660C CS0661
S1660C NCYBER RNEYBC
OURSEO ILOVEC CIEOVL
NCYBER OURSEO OOERSU

(1, 2, 3, 4, 5, 6)
(6, 1, 5, 3, 4, 2)
DES Structure

- DES is a block cipher operating on 64-bit blocks
- Split in two parts
- The Key is 56-bit
 - total of 2^{56} possible keys
- Encryption process:
 - 16 rounds of permutation and substitution ensuring data security through confusion and diffusion.
Single Round

- K_i is a subkey
- L_i, R_i (32 bit) (Left and Right of a block)
- Each round has the same function f
 - key transformation
 - expansion permutation
 - s-box substitution
 - p-box permutation
 - XOR and swapping
DES Challenge

DES developed by IBM with suggestions by NSA:

- Originally, the key was 64-bit instead of 56-bit
- The S-Box was changed by the NSA and not made publicly available

The challenge was proposed by RSA to test the strength of DES against brute-force attacks

- Electronic Frontier Foundation (EFF) and others participated
- Using specially designed hardware or collaborative computing
 - DES I (1997): First successful brute-force attack against DES (prize of 10k $)
 - DES II (1998): Demonstrated the decreasing cost and time to break DES
 - DES III (1999): Final challenge, broken in just 22 hours

Proved that DES was vulnerable to brute-force attacks and led to a stronger encryption standard like AES (Advanced Encryption Standard) with a public call
Advanced Encryption Standard (AES)

NIST competition started in 1997:
• an unclassified, publicly disclosed encryption algorithm capable of protecting sensitive government information well into the next century
• AES shall be available on a worldwide, non-exclusive, royalty-free basis
• Mainly an academic competition

AES supports keys of length 128, 192, and 256 bits
Big Numbers in the real world

• Odds for all 5 numbers + Powerball
 – $292 \times 10^6 \Rightarrow 2^{38}$

• The Age of the Universe in Seconds
 – $4.3 \times 10^{17} \Rightarrow 2^{58}$ https://81018.com/universeclock/

• # of cycles in a century of a 4 GHz CPU $\Rightarrow 2^{64}$

• # of arrangements of a Rubik's cube $4.3 \times 10^{19} \Rightarrow 2^{65}$

• Atoms in the Earth $1.33 \times 10^{50} \Rightarrow 2^{166}$

• Electrons in the universe $10^{80} \Rightarrow 2^{266}$
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Year of Introduction</th>
<th>Key Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES (Data Encryption Standard)</td>
<td>1977</td>
<td>2^{56}</td>
</tr>
<tr>
<td>Blowfish</td>
<td>1993</td>
<td>2^{32} to 2^{448}</td>
</tr>
<tr>
<td>Twofish</td>
<td>1998</td>
<td>2^{128} to 2^{256}</td>
</tr>
<tr>
<td>Serpent</td>
<td>1999</td>
<td>2^{128} to 2^{256}</td>
</tr>
<tr>
<td>RC4 (Stream cipher)</td>
<td>1987</td>
<td>2^{40} to 2^{2048}</td>
</tr>
<tr>
<td>RC5</td>
<td>1994</td>
<td>up to 2^{2040}</td>
</tr>
<tr>
<td>RC6</td>
<td>1998</td>
<td>2^{128} up to 2^{2040}</td>
</tr>
<tr>
<td>CAST-128 (GPG and PGP)</td>
<td>1996</td>
<td>2^{40} to 2^{128}</td>
</tr>
<tr>
<td>AES 128, AES 192, AES 256</td>
<td>2001</td>
<td>2^{128} 2^{192} 2^{256}</td>
</tr>
</tbody>
</table>
What We Have Learned

• Security goals and attacks on communication
• Frequency analysis defeats classic encryption
• Modern symmetric encryption
 – Stream cipher: one-time pads and the importance of randomness
 – Block cipher: Confusion and Diffusion, Vigenère, Transposition, DES
• Use AES (not DES) for symmetric encryption