Dropbox Gearup]|

Checkpoint

At this point, you should have a design
and be ready to implement it!

Make sure you have done your design meeting!
If you have not, contact us ASAP

Make a user
client.create_user("usr", "pswd")

#

Log 1n
u = client.authenticate_user("usr", "pswd") # Returns a User object

What the client looks like

Make a user

client.create_user("usr", "pswd")

#

Log 1n

u = client.authenticate_user("usr", "pswd") # Returns a User object

Make some data to upload
data_to_upload = b'testing data’

Upload it
u.upload_file("filel", data_to_be_uploaded)

Download it again
downloaded_data = u.download_file("filel")
assert downloaded_data == data_to_be_uploaded

System Overview

Keyserver (KS)
« Map<Key, Value>
* Immutable (can't modify after writing)
» Per-user storage limit
=> More secure, but limited

A

Your client

Setup and Stencil

Container setup & Environment

For this project, we'll use the "Development container" (same as project 1)
« Some slight updates—see setup guide for instructions

 Stencil uses a Python virtual environment
— See setup guide for instructions
— Like VSCode? You can use it with the container!

Python stencil/testing overview

* Demo!
* (See posted examples)

Serializing stuff on the dataserver

Remember: to store or encrypt/MAC/sign anything, it must be of type bytes
Example: strings

s = "Hello world!"
s_bytes = s.encode("utf-8") # Or write s = b”Hello world”

m = memloc.Make()
dataserver.Set(m, s_bytes)

sb = dataserver.Get(m)
s_check = sb.decode("utf-8")

assert(s == s_check)

=~ N Y)
[For lots more info: see the serialization examples, linked in the setup guide/Ed FAQ }
\ N A N N

https://github.com/brown-csci1660/dropbox-examples/blob/main/test_examples.py

Example: more complex types

=> Use our serialization API to help you!

def test _serialize dict(self):
info = {
Ilall: 1’
"b": crypto.SecureRandom(20),

"c": [1, 2, 3, 4], _ . -
1 int, bool, string, bytes, dict, list

Can serialize any nested

addr = memloc.Make()
info_bytes = util.ObjectToBytes(info)
dataserver.Set(addr, info_bytes)

info_check_bytes = dataserver.Get(addr)
info_check = util.BytesToObject(info_check_bytes)
assert(info == info_check)

[But can we do better? What if you like types? }

What about more complex types?

Yes! Can serialize arbitrary clasess, dataclasses, etc.
You just need to write some helpers.

See serialization examples for more info!

Example: Asymmetric keys

Note: this generates a key for
encryption

SignatureKeyGen() generates a
key for signing

Asymmetric keys use a special type, need to serialize specially...

k_pub, k_priv = crypto.AsymmetricKeyGen(2-/;7P

How do I know which types these are?

m = s_addr("k_pub")

k_pub_bytes = bytes(k_pub) # Convert to bytes
dataserver.Set(m, k_pub_bytes)

kpub_check_bytes = dataserver.Get(m)

Convert back to Asymmetric key object
kpub_check = crypto.AsymmetricEncryptKey.from_bytes(kpub_check_bytes)
assert(k_pub == kpub_check)

AsymmetricEncryptKey: public key
AsymmetricDecryptKey: private key

Working with memlocs

Demo/example!

See setup guide and serialization examples for more info!

(And the recording...)

Security analysis/Attack tests

For your final writeup, should try to write tests for some attacks

What could this include?

* Setup phase: what data should be on the dataserver
This is where you can write arbitrary Cod\e—f
to corrupt stuff on the dataserver!
 Attack phase: what does the attacker do? — |(Don't need to just follow the client API!,
because the attacker won't! N

 Test phase: what does the client do that detects the attack?
=> Next operation after attack should raise a DropboxError

[See examples for more info! }

Tests that we provide

- test_client.py: Some basic tests, can add your own tests here
=> Your security analysis tests (ie, tests on attacks) should go here

- test_functionality.py: Almost all of the the autograder tests (more comprehensive test suite)

=> See setup guide for examples and tips on how to run the tests! Make your life easier!

What you'll submit

* Your code: autograder will be up soon

* Final writeup: your design document
— Updated design based on what you submitted

— Security analysis: speculate on some attacks, write about how your design prevents
them

[For full details on what you should include, see the handout }

Some final design advice
1. Make sure you look at the serialization examples + resources in the
setup guide

2. Plan things out on paper: if you need to make changes to your design,
try to work them out on paper/a whiteboard first to discuss => you don't
want to backtrack on your implementation if you find a problem

3. Don't try to implement everything all at once! We've given you a lot of
tests: try to implement the major bits (upload/download, append, sharing)
one at a time and test them

4, Don't repeat yourself--use helper functions!!!

=> You're going to do a lot of small things repeatedly (serialization,
deserialization, encrypt+MAC, integrity checking) => make helper functions!!

=> Spending some time to think about and build these WILL absolutely
save you time later when you need to debug! We really mean it!

About autograding

Questions?

