
Dropbox Gearup

Goals

Idea: design an end-to-end encrypted file sharing service

Learn how to design a secure system using the cryptography and
security tools we've learned so far!
• Thinking about how to design a system securely
• Iterate on your design after receiving feedback
• Think about attacking your design based on a threat model

Goals

Goal: client for end-to-end encrypted file sharing service

What you have
• Crypto library
• Some insecure data storage
• Threat model (what kinds of attacks to defend against)

What you'll build
• Client API for storing data securely on insecure data storage

You get to figure out how to use the provided crypto
operations to accomplish this goal!

How you'll do this

• Now: Design document
– Think carefully about how you'll implement the requirements
– How you'll store data, how you'll use crypto to secure it
– ~4 pages + diagrams => See handout for specific details

=> Meet with TA afterward for direct feedback => use this time wisely!

How you'll do this

• Now: Design document
– Think carefully about how you'll implement the requirements
– How you'll store data, how you'll use crypto to secure it
– ~4 pages + diagrams => See handout for specific details

=> Meet with TA afterward for direct feedback => use this time wisely!

• Implementation (Due Wednesday, May 1)
– Submit your code + final design document

Remember: the big part is about your design!

What the client looks like
Make a user
client.create_user("usr", "pswd")

. . .

Log in
u = client.authenticate_user("usr", "pswd") # Returns a User object

14MtAPI

What the client looks like
Make a user
client.create_user("usr", "pswd")

. . .

Log in
u = client.authenticate_user("usr", "pswd") # Returns a User object

Make some data to upload
data_to_upload = b'testing data'

Upload it
u.upload_file("file1", data_to_be_uploaded)

Download it again
downloaded_data = u.download_file("file1")
assert downloaded_data == data_to_be_uploaded

to

The Client API: what you'll implement

1. User operations: create_user, authenticate_user

2. File operations: upload_file, download_file, append_file

3. Sharing operations: share_file, receive_file, revoke_file

LOGIN

The Client API: what you'll implement

1. User operations: create_user, authenticate_user

2. File operations: upload_file, download_file, append_file

3. Sharing operations: share_file, receive_file, revoke_file

Your goal: implement client while preserving confidentiality and integrity in an
insecure environment

So what's the environment?

The Wiki

The definitive source for everything all specifications
 https://brown-csci1660.github.io/dropbox-wiki/

Look here for:
• Descriptions of each API function and requirements
• Detailed specifications for threat model/environment (what you can ignore)
• Documentation for all support code

Also: for implementation notes and container setup, see the setup guide:
https://hackmd.io/@cs1660/dropbox-setup-guide

https://brown-csci1660.github.io/dropbox-wiki/
https://hackmd.io/@cs1660/dropbox-setup-guide

THESETUP INITIALVIEW 1 1 BE

PROVIDENT

I
It

L

CLIENTY UTTACKERI

Dataserver
 - Most data goes here

 - Insecure

Keyserver

 - Small, immutable data
storage

 - Attacker can read but
can't modify

System Overview

Dataserver (KS)
• Map<Key, Value>
• No limits on what you can store
• Attacker can view/modify/delete data

Your client

Attacker

Keyserver (KS)
• Map<Key, Value>
• Immutable (can't modify after writing)
• Per-user storage limit
=> More secure, but limited

Dataserver

• Map<memloc, Data>
– memloc: 16 byte identifier
– Data: bytes

• Operations: Set(), Get()

• Most data will be stored here
• Attacker has full access

– What could an attacker read? => Threat to confidentiality
– What happens if an attacker changes something? => Threat to Integrity

Remember for later: see later slides, setup guide for examples and tips on
memlocs and how to serialize objects

Dataserver: how to store stuff

Memloc: arbitrary 16-byte identifier for any object
- Could be random: crypto.SecureRandom(16)
- Could be deterministic, eg. last 16 bytes of Hash("alice@somefile")

What data can you store? Anything that you can convert to bytes()
• We provide some helpers (see Serialization API on Wiki)
• … and some code examples (see Setup Guide for links)

FILEOWNEDBY

Can store any data structure, as long as you can serialize it to
bytes

How to store stuff

SEE SETUP GUIDE

SERIALIZATION EXAMPLES

VIDEO FOR EXAMPLES

Keyserver

• Public, immutable key-value store
• Map<key_name, pubkey>

– key_name: any string ("key-alice")
– pubkey: Any public key (for encryption or signing)

• Operations: Get(key_name), Set(key_name, pubkey)

Keyserver

• Public, immutable key-value store
• Map<key_name, pubkey>

– key_name: any string ("key-alice")
– pubkey: Any public key (for encryption or signing)

• Operations: Get(key_name), Set(key_name, pubkey)

• Designed for storing public keys
• Immutable: upload once, can't modify again (but neither can attacker)
• Number of keys per user must be constant

=> Can't grow with number of files, operations, etc.

Threat model: What the attacker can do

• Read/write/modify anything on Dataserver
• Read on the Keyserver (but not modify)
• Can create users/use client API, just like any normal user
• Knows how your client works

– Can see your code (imagine it’s public!)
– Knows what format in which you'll store data

=> For full details, see the wiki ("Threat model" section)

I DON'T RELY ON
OBSCURE FILENAMES ETC

API Overview

API: User functions

• create_user(user, pass) -> User
• authenticate_user(user, pass) -> User

Creates/Authenticates user in your system
• Generates or fetches any keys you'll need to implement other operations
• User object: you get to decide what goes in here
• All keys for encryption/integrity/etc will depend on this password (more on

this later)
– Don't worry about the user picking a bad password

Log in
u = client.authenticate_user("usr", "pswd") # Returns a User object

data_to_upload = b'testing data’

Upload it (using state from user object)
u.upload_file("file1", data_to_be_uploaded)

Download it again
downloaded_data = u.download_file("file1")
assert downloaded_data == data_to_be_uploaded

API: File operations

• User.upload_file(filename, data)
• User.download_file(filename, data)
• User.append_file(filename, data)

• Upload/download a file securely
• Append to an existing file

– Performance requirement: data sent must scale only with data being appended
(ie, can't download and re-encrypt entire file)

BYTES

STRING

API: File operations

• User.upload_file(filename, data)
• User.download_file(filename, data)
• User.append_file(filename, data)

• Upload/download a file securely
• Append to an existing file

– Performance requirement: data sent must scale only with data being appended
(ie, can't download and re-encrypt entire file)

CS1620/2660 students: Can implement “efficient updates” (more notes at end)
 => Make upload_file more efficient when file has changed
 (implement this or “delegated sharing” (next)

API: Sharing

• User.share_file(filename, user_to_add)
• User.receive_file(filename, file_owner)
• User.revoke_file(filename, user)

• Owner can share file with any number of users
• Users can do any file operations on file (upload, download, append)

– All users see same copy of file

• Owner can revoke a user’s access, after which user can’t do any more
operations on that file

CS1620/2660 students: Can extend with “delegated sharing”
(implement this or “efficient updates”)

ONLY OWNER

ANYONE

HOW TO THINKABOUTSHARING

A B PS

RECU FILE FA

ih

g

This is what the flow of API calls would look like for Alice to share a file with Bob, and for Bob to
download it. There are many possible implementations for sharing--you can decide on what
information Alice needs to store when sharing such that Bob can download the file.

What you WON'T implement

• Networking (it's all local)
• Writing actual files to disk
• Crypto (we provide a library)

ÞYou can think of the actual implementation
as a secure, in-memory key value store

Note: All client state must be on the
dataserver/keyserver

Make a user
client.create_user("usr", "pswd")

. . .

Log in
u = client.authenticate_user("usr", "pswd

Make some data to upload
data_to_upload = b'testing data'

Upload it
u.upload_file("file1", data_to_be_uploaded

Download it again
downloaded_data = u.download_file("file1")
assert downloaded_data == data_to_be_uploaded

Crypto primitives

The crypto library

The support code contains a crypto library for you use
• No external crypto libraries

What you have
• Asymmetric crypto (Encryption, digital signatures)
• Symmetric crypto (Encryption, HMACs)
• Hashing
• Key derivation functions
• Secure randomness

=> A big part of your design is about how you use these!

GOALS
CONFIDENTIALITY

INTEGRITY

Asymmetric Crypto

Encryption
• Gen() -> K_pub, K_priv
• Encrypt(k_pub, data)
• Decrypt(k_priv, data)

Signing
• Gen() -> K_pub, K_priv
• Sign(k_priv, data)
• Verify(k_pub, data)

CONFIDENTIALLY

INTEGRITY

Asymmetric Crypto

Encryption
• Enc(k, m)
• Dec(k, c)

Authentication with symmetric crypto
• Message authentication codes: computed based on hash of message, can

verify if you have key
• HMAC(k, m) -> t
• HMACEqual(t1, t2) => {0, 1}

INTEGRITY

t.tk tEfm ii
If=> Think of an HMAC like a keyed hash function: requires both

the original message and key to compute the same output

Asymmetric vs. Symmetric crypto

Asymmetric crypto

 - Public and private key

 - Super slow

 - Limit on the size of the message

Symmetric crypto

 - One key

 - Key distribution is a challenge

 - Multiple people could hold this key

 - Much faster than asymmetric crypto (>1000x faster)

 - Can encrypt any size message (eg. CBC mode, etc.)

=> Maybe useful for sharing

 => Good for large data

 => You will have many symmetric keys

Key functions for working with keys (pun intended lol)

PasswordKDF(salt, password) => symmetric key

 => Under the hood, uses:

 PBKDF2(password, salt, key_length) => symmetric key of length L

 - Secure way to generate a key based on a password, involves
computing a large number (>100000) iterations of Hash(salt || password)

HashKDF(key, "purpose") => another symmetric key

 => Given one key, generate another key ✨ deterministically✨
 => Can use to compute the same key from different sessions

SESSION SESSION Z

LOGIST PASS LOGIN A A's

Ko

www gg µ µ

Kp SOMENAME Kp
FORKEY'S

PURPOSELPUBLI

ALKE F E

Bob Fz WHAT IF ALICE
WANTSTO SHAREONLY
Fz WITH BOB

FAQ: "Why can't we just use one key to encrypt files?"

Example: Alice has 3 files, wants to share one with Bob

Example: deriving keys in different sessions with HashKDF

HashKDF example

Authenticated encryption

Your goal for most things is confidentiality AND integrity
Two operations:
• Encrypt: Confidentiality => Encrypt(k, m)
• MAC: Authentication => HMAC(k, m)

• How to do this is well-studied and has common pitfalls
– Which do you do first? (Encrypt then MAC, MAC then encrypt, Encrypt

THEN MAC, ...)
– See cryptography lectures for more)

• You should use: Encrypt then MAC

NEED BOTH
TOSTOREMOSTOBICTS
SECURELY

ENCRYPT THEN MAC

PLAINTEXT

ENIRYPI KE.NL

HARM
CIPHERTEXT MAC

This is also a great place to employ HashKDF, since we need to use
different keys for the encryption and the HMAC step:

k => input key

 HashKDF(k, "enc") => k_enc

 HashKDF(k, "mac") => k_mac

These are great operations to implement as helper functions:

EncryptAndMAC(k, m) => returns (c, mac) => store both

DecryptAndVerify(k, c, mac) => m (or error if MAC verify fails

Authenticated encryption

• You should use: Encrypt then MAC
• Proven to give us the security properties we

want, when different keys used for
encryption and hashing

CS1515 students: We don’t have AES-GGM, sorry. L

Design: In general

• In general, use one key per purpose
– Think about how sharing keys between operations can affect security
– HashKDF is your friend

• A bit of software engineering can help you!
– Consider making some helper functions for common operations

• Setup guide: examples on how to serialize stuff

ENCRYPT THEN MAC

PLAINTEXT

ENIRYPI KE.NL

TAMIKA
CIPHERTEXT MAC

Setup and Stencil

Container setup & Environment

For this project, we'll use the "Development container" (same as project 1)
• Some slight updates—see setup guide for instructions

• Stencil uses a Python virtual environment
– See setup guide for instructions
– Like VSCode? You can use it with the container!

CS1620/CS2660: Efficient updates

"Efficient" updates

• Broadly, When uploading a new file, bandwidth should scale based on
amount of data that was changed

• How you do this is up to you, here's one way...

UPLOAD F DAIS
UPLOAD F DAIBasically: if re-uploading the same file, you should

not be downloading and reuploading the whole file

=> Think about dividing up the file into blocks, then
deal with each block

=> How you do this is up to you--there are multiple
possible implementations!

ACTING

4 TH P

1 4 14
FBI I NF

DATA

How to think about integrity when the file is stored in multiple blocks?

One way: Merkle tree (hash tree)

For more notes on this, see the “Cloud Security” notes from lecture 17, starting on page 34

(Was extra reading from lecture)

"Efficient" updates

• Broadly, When uploading a new file, bandwidth should scale based on
amount of data that was changed

• How you do this is up to you, here's one way...

