Dropbox Gearup

Goals

|dea: design an end-to-end encrypted file sharing service

Learn how to design a secure system using the cryptography and
security tools we've learned so far!

e Thinking about how to design a system securely
* Iterate on your design after receiving feedback
« Think about attacking your design based on a threat model

Goals

Goal: client for end-to-end encrypted file sharing service

What you have

 Crypto library

« Some insecure data storage

* Threat model (what kinds of attacks to defend against)

What you'll build

 Client API for storing data securely on insecure data storage

How you'll do this

* Now: Design document
— Think carefully about how you'll implement the requirements

— How you'll store data, how you'll use crypto to secure it
— ~4 pages + diagrams => See handout for specific details

=> Meet with TA afterward for direct feedback => use this time wisely!

How you'll do this

* Now: Design document
— Think carefully about how you'll implement the requirements
— How you'll store data, how you'll use crypto to secure it
— ~4 pages + diagrams => See handout for specific details

=> Meet with TA afterward for direct feedback => use this time wisely!

* Implementation (Due Wednesday, May 1)
— Submit your code + final design document

What the client looks like

Make a user

client.cregte user("usr", "pswd")
()
/L\/l\ﬁ‘/(fm\

Log 1n L/
= client.authenticate_user("usr", "pswd") # Returns a

D

—

What the client looks like

Make a user

client.create_user("usr", "pswd")

#

Log 1n

u = client.authenticate_user("usr", "pswd") # Returns a User object

e — Y

Make some data to upload
data_to_upload = b'testing data’

Upload it
u.upload_file("filel", data_to_be_uploaded)

Download it again
downloaded_data = u.download_file("filel")
assert downloaded_data == data_to_be_uploaded

The Client APIl: what you'll implement
LOE/A/

1. User operations: create_user, authenticate_user

2. File operations: upload_file, download_file, append_file

3. Sharing operations: share_file, receive_file, revoke_file
S -

L—

The Client APl: what you'll implement

1. User operations: create_user, authenticate_user

2. File operations: upload_file, download_file, append_file

3. Sharing operations: share_file, receive_file, revoke_file

Your goal: implement client while preserving confidentiality and integrity in an
insecure environment

The Wiki

The definitive source for everything all specifications

Look here for:

* Descriptions of each API function and requirements

* Detailed specifications for threat model/environment (what you can ignore)
« Documentation for all support code

https://hackmd.io/@cs1660/dropbox-setup-guide

[Also: for implementation notes and container setup, see the setup guide: }

https://brown-csci1660.github.io/dropbox-wiki/
https://hackmd.io/@cs1660/dropbox-setup-guide

THNe_Serve (AL VIEW)

772

Keyserver
- Small, immutable data
storage

- Attacker can read but
can't modify

ALl STE posr ge
N VE OF 7qe(E

Dataserver
- Most data goes here
- Insecure

System Overview

Keyserver (KS)
« Map<Key, Value>
* Immutable (can't modify after writing)
» Per-user storage limit
=> More secure, but limited

A a—

Your client

Dataserver

Map<memloc, Data>
— memloc: 16 byte identifier
— Data: bytes

Operations: Set(), Get()

Most data will be stored here

Attacker has full access
— What could an attacker read? => Threat to confidentiality
— What happens if an attacker changes something? => Threat to Integrity

Remember for later: see later slides, setup guide for examples and tips on
memlocs and how to serialize objects

1

Dataserver: how to store stuff

Memloc: arbitrary 16-byte identifier for any object

- Could be random: crypto.SecureBandom(16)
- Could be deterministic, eg. last 16 bytes of Hash("alice@somefile")

(5 ce. “Some Fre owweD By
Auce

What data can you store? Anything that you can convert to bytes()
* We provide some helpers (see Serialization APl on Wiki)

* ... and some code examples (see Setup Guide for links)

Can store any data structure, as long as you can serialize it to
bytes -

How to store stuff
556/ 557%9 5/,95/
CppIfLIZfIom EYARLE,

/
+ oED For LA PLES,

Keyserver

 Public, immutable key-value store

* Map<key name, pubkey>
— key_name: any string ("key-alice")
— pubkey: Any public key (for encryption or signing)
* Operations: Get(key_name), Set(key_name, pubkey)

Keyserver

Public, immutable key-value store

Map<key name, pubkey>

— key_name: any string ("key-alice")

— pubkey: Any public key (for encryption or signing)

Operations: Get(key_name), Set(key_name, pubkey)

Designed for storing public keys
Immutable: upload once, can't modify again (but neither can attacker)

Number of keys per user must be constant
=> Can't grow with number of files, operations, etc.

Threat model: What the attacker can do

Read/write/modify anything on Dataserver

e

Read on the Keyserver (but not modify)

Can create users/use client API, just like any normal user

Knows how your client works

— Can see your code (imagine it's publicl) —> DO/VI/ /{él/ SN
— Knows what format in which you'll store data
TBCCves Flrophst Ly .

=> For full details, see the wiki (" Threat model" section)

e

APl Overview

APIl: User functions

 create user(user, pass) -> User

 authenticate_user(user, pass) ->_User
B ==

Creates/Authenticates user in your system
+ Generates or fetches any keys you'll need to implement other operations
» User object: you get to decide what goes in here

» All keys for encryption/integrity/etc will depend on this password (more on
this later)

— Don't worry about the user picking a bad password

Log 1n
= client.authenticate_user("usr", "pswd")

data_to_upload = b'testing data’

Upload it (using state from user object)
u.upload_file("filel", data_to_be_uploaded)

Download it again
downloaded_data = u.download_file("filel")
assert downloaded_data == data_to_be_uploaded

Returns a

API: File operations
DRt

User.upload_file(filename, data)

User.download file(filename, data)

User.append file(filename, data)

(N STIP 6

Upload/download a file securely

Append to an existing file

— Performance requirement: data sent must scale only with data being appended
(ie, can't download and re-encrypt entire file)

API: File operations

User.upload_file(filename, data)—3&
User.download file(filename, data)
User.append file(filename, data)

—_—

Upload/download a file securely

Append to an existing file

— Performance requirement: data sent must scale only with data being appended
(ie, can't download and re-encrypt entire file)

CS1620/2660 students: Can implement “efficient updates” (more notes at end)
=> Make upload_file more efficient when file has changed
(implement this or “delegated sharing” (next)

API: Sharing

User.share file(filename, user_to_add)
User.receive file(filename, file_owner)
User.revoke file(filename, user)
Owner can share file with any number of users

Users can do any file operations on file (upload, download, append)
— All users see same copy of file Z— /4///4/1/3 :

Owner can reyoke a user’s access, after which user can’t do any more
operations on that file

CS1620/2660 students: Can extend with “delegated sharing”
(implement this or “efficient updates”) D

LW 70 THWK ABour swleivs

A B
 Swuee (£ 8)

EEcv- pree (FA)

2<

/ C

pmwwﬂo%

B

This is what the flow of API calls would look like for Alice to share a file with Bob, and for Bob to
download it. There are many possible implementations for sharing--you can decide on what

information Alice needs to store when sharing such that Bob can download the file.

What you WON'T implement

Make a user
. Networking (it's all local) client.create_user("usr", "pswd")

« Writing actual files to disk ”

 Crypto (we provide a library) 4 Log in

u = client.authenticate_user("usr",

11}

= You can think of the actual implementation 4 e some data to upload

as a secure, in-memory key value store data_to_upload = b'testing data’
Note: All client state must be on the # Upload it
dataserver/keyserver u.upload_file("filel", data_to_be_upl

Download it again
downloaded_data = u.download_file("f1
assert downloaded_data == data_to_be_

Crypto primitives

The crypto library

The support code contains a crypto library for you use
* No external crypto libraries

GoALS
What you have -~ @ﬂ/f//é‘/fmu/‘/
« Asymmetric crypto (Encryption, digital signatures)
- . . — JNTEGRTY
* Symmetric crypto (Encryption, HMACs)

* Hashing
 Key derivation functions
 Secure randomness

[=> A big part of your design is about how you use these! }

Asymmetric Crypto

Encryption e /‘/ |
* Gen() -> K_pub, K_priv C OA]](// ﬁAW/flL(%/

* Encrypt(k_pub, data)
 Decrypt(k_priv, data) \

Nlelallale
* Gen() -> K_pub, K_priv

« Sign(k_priv, data) //ljfézéﬂf/ 7/

* Verify(k_pub, data)

Asymmetric Crypto

Encryption
* Enc(k, m)
e Decl(k, c)

T EGLL)‘//
Authentication with symmetric crypto /
« Message authentication codes: computed based on hash of message, can

verify if you have key p A o /3 X
© HMAC(K, m) -> t oM = —=
« HMACEqual(tl, t2) => {0, 1} ¢ AMAC(KA) = AMAC (M x)
/7
+=¢’

=> Think of an HMAC like a keyed hash function: requires both
the original message and key to compute the same output

Asymmetric vs. Symmetric crypto

Asymmetric crypto

- Public and private key
- Super slow
- Limit on the size of the message
a)

=> Maybe useful for sharing

Symmetric crypto

- One key

- Key distribution is a challenge

- Multiple people could hold this key

- Much faster than asymmetric crypto (>1000x faster)
- Can encrypt any size message (eg. CBC mode, etc.)

=> Good for large data
=> You will have many symmetric keys

Key functions for working with keys (pun intended lol)

PasswordKDF(salt, password) => symmetric key
=> Under the hood, uses:
PBKDF2(password, salt, key_length) => symmetric key of length L

- Secure way to generate a key based on a password, involves
computing a large number (>100000) iterations of Hash(salt || password)

HashKDF(key, "purpose") => another symmetric key

=> Given one key, generate another key ' deterministically
=> Can use to compute the same key from different sessions

Example: deriving keys in different sessions with HashKDF

Sestyon | Seem 2

Loerv! [7]/)/ 1088 " Locimv/ WP s
;7 /@ ;) K/

Rpshior /’:(‘5) 1 Vﬁ’”_f’ij s rior (Fs prepucy.
- /<? /\ S WABE =K p

roe KEYL
¥

Puenst (PoBLc)

FAQ: "Why can't we just use one key to encrypt files?"

Example: Alice has 3 files, wants to share one with Bob

Avick: 3 /Z é

P
- é — LNAT)F /(c/c[

/\ LArrS 70 CAAe go)
/‘2_ Loyl BoB ‘7

HashKDF example

base_key = crypto.SecureRandom(16)

derived_key_1 = crypto.HashKDF(base_key, "encryption")
derived_key_2 = crypto.HashKDF(base_key, "mac")

Derived keys are the same length as the input key:
assert(len(base_key) == len(derived_key_ 1))
assert(len(base_key) == len(derived_key_2))

derived_key_3 = crypto.HashKDF(base_key, "encryption")

Using the same base key and purpose results in the same derived key:
assert(derived_key_1 == derived_key_3)

Authenticated encryption

Your goal for most things is confidentiality AND integrity /U[CO _M

Two operations: 10 Crons AT /i
* Encrypt: Confidentiality => Encrypt(k, m) Orcuesry

« MAC: Authentication => HMAC(k, m)

* How to do this is well-studied and has common pitfalls

— Which do you do first? (Encrypt then MAC, MAC then encrypt, Encrypt
THEN MAC, ...)

— See cryptography lectures for more)

* You should use: Encrypt then MAC

LN — TAEW= MAC

PLJA/M’ M

&Kﬂ/ﬂ/ &— KE/UL

f

%

{Amc e

y

C 1 PNERTENT

MAC

These are great operations to implement as helper functions:

EncryptAndMAC(k, m) => returns (c, mac) => store both

DecryptAndVerify(k, ¢, mac) => m (or error if MAC verify fails

This is also a great place to employ HashKDF, since we need to use

different keys for the encryption and the HMAC step:

k => input key
HashKDF(k, "enc") => k_enc
HashKDF(k, "mac") => k_mac

Authenticated encryption

* You should use: Encrypt then MAC

* Proven to give us the security properties we
want, when different keys used for
encryption and hashing

Encryption

. Hash function

scM
[CS1515 students: We don’t have AES-&@1, sorry. ® 1

Design: In general

* In general, use one key per purpose

— Think about how sharing keys between operations can affect security
— HashKDF is your friend

* A bit of software engineering can help you!
— Consider making some helper functions for common operations

 Setup guide: examples on how to serialize stuft

LN — TAEW= MAC

PLJA/M’ EM

Z’:,UCIQ)/;W/ &— KE/UL

e

Cipenges | MAC

Setup and Stencil

Container setup & Environment

For this project, we'll use the "Development container" (same as project 1)
« Some slight updates—see setup guide for instructions

 Stencil uses a Python virtual environment
— See setup guide for instructions
— Like VSCode? You can use it with the container!

CS1620/CS2660: Efficient updates

"Efficient" updates

* Broadly, When uploading a new file, bandwidth should scale based on
amount of data that was changed

* How you do this is up to you, here's one way...

yﬂo;w [F/ PATA

Basically: if re-uploading the same file, you should (/}740;@ (F D/A/A
not be downloading and reuploading the whole file

=> Think about dividing up the file into blocks, then
deal with each block

=> How you do this is up to you--there are multiple
possible implementations!

How to think about integrity when the file is stored in multiple blocks?

One way: Merkle tree (hash tree)

E

(%

For more notes on this, see the “Cloud Security” notes from lecture 17, starting on page 34
(Was extra reading from lecture)

"Efficient" updates

* Broadly, When uploading a new file, bandwidth should scale based on
amount of data that was changed

* How you do this is up to you, here's one way...

