Dropbox Gearup

Goals

|dea: design an end-to-end encrypted file sharing service

Learn how to design a secure system using the cryptography and
security tools we've learned so far!

e Thinking about how to design a system securely
* Iterate on your design after receiving feedback
« Think about attacking your design based on a threat model

Goals

Goal: client for end-to-end encrypted file sharing service

What you have

 Crypto library

« Some insecure data storage

* Threat model (what kinds of attacks to defend against)

What you'll build

 Client API for storing data securely on insecure data storage

How you'll do this

* Now: Design document
— Think carefully about how you'll implement the requirements
— How you'll store data, how you'll use crypto to secure it
— ~4 pages + diagrams
— See handout for details
= Meet with TAs afterward for feedback

* Implementation (Due Monday, May 8)
— Submit your code + final design document

How you'll do this

« Now: Design document ['{//X)

— Think carefully about how you'll implement the requirements
— How you'll store data, how you'll use crypto to secure it

— ~4 pages + diagrams

— See handout for details

= Meet with TAs afterward for feedback

* Implementation (Due Monday, May 8)
— Submit your code + final design document

What the client looks like

Make a user

client.create_user("usr", "pswd")

#

Log 1n

u = client.authenticate_user("usr", "pswd") # Returns a User object

Make some data to upload

data_to_upload = b'testing data’ 7/ /,,{F[_EMC"”/
Upload i’; _ ”\’ stﬁ.
u.upload_file("filel", data_to_be_uploaded) 4\5

Download it again
downloaded_data = u.download_file("filel")
assert downloaded_data ==—data_to_be_uploaded

The Client API: what you'll implement

Your implementation: some functions that implement the client

* User operations: create_user, authenticate_user

* File operations: upload_file, download_file, append_file

 Sharing operations: share_file, receive_file, revoke_file

Your goal: implement client while preserving confldentlalltv and integrity in an
insecure environment

The Wiki

The definitive source for everything all specifications is the wiki:

Look here for:

* Descriptions of each API function and requirements
* Detailed description of threat model/environment

» Documentation for all support code

For implementation notes and container setup, see the setup guide:

https://cs.brown.edu/courses/csci1660/dropbox-wiki/
https://hackmd.io/@cs1660/dropbox-setup-guide

AV-N

VIEW) ML e AT KE

onNg | OF TILL -

)/l'rA Ch 1/1-0

)

CRINPH Y B

s \
S\G‘ &QE\
N
S
N

ey Rt oy
— ,dél f /Iﬂﬁa_— /\) [- M
IR CTae el —WSecver I\
EEEEI A\
Néegserr 7, =\
,C/@PW/ z7) \
\ r / A/
=T \ R p— \ / /77
— e A A prap
[v '
) Clis /’ (

System Overview

Keyserver (KS)
« Map<Key, Value>
* Immutable (can't modify after writing)
» Per-user storage limit
=> More secure, but limited

([fonr \ A

/(Puﬁ/ﬁ

Your client

Dataserver

7 e yweve (Vo Jusi PASHQA CTrowd 4
Map<Memloc, Data> TRIWEATE]

— Memloc: 16 bytes
— Data: bytes

Operations: Set(), Get()

Most data will be stored here

Attacker has full access
— What could an attacker read? => Threat to confidentiality
— What happens if an attacker changes something? => Threat to Integrity

Keyserver

Public, immutable key-value store

Map<key_name, data>

— key_name: any string ("key-alice")

— Data: bytes

Operations: Get(key), Set(key, value)

Designed for storing public keys
Immutable: upload once, can't modify again (but neither can attacker)

Number of keys per user must be constant
=> Can't grow with number of files, operations, etc.

Threat model: What the attacker can do

Read/write/modify anything on Dataserver

Read on the Keyserver (but not modity)

Can create users/use client API, just like any normal user

Knows how your client works

7wy RECY o0 OBSCORE FLennes, €7¢

— Knows what format in which you'll store data

— Can see your code

=> For full details, see the wiki (" Threat model" section)

/

APl Overview

APIl: User functions

 create user(user, pass) -> User
. =
 authenticate_user(user, pass) -> User

Creates/Authenticates user in your system
+ Generates or fetches any keys you'll need to implement other operations
« User object: you get to decide what goes in here

» All keys for encryption/integrity/etc will depend on this password (more on
this later)

— Don't worry about the user picking a bad password

API: File operations

BASED op vien's Spre (Per-osen feyg £7c)
User.upload file(filename, data)
User.download file(filename, data)
User.append file(filename, data)
S 0y S— Brresc]
Upload/download a file securely
Append to an existing file L/

— Performance requirement: data sent must scale only with data being appended
(ie, can't download and re-encrypt entire file)

CS1620/CS2660 students: additional requirement on how files are stored
for performance (more on this later) (SCE EMD

L Appriomde DERE 2 ppeeteny | el

/NFO

API: Sharing
JVEW

L °—
User.receive_file(filename, file_owner) % }/ OwNE
User.revoke file(filename, user) CAU JXMZé/ZEVOKZ;I

.

User.share_file(filename, user_to_add)

Owner can share file with any number of users

Users can do any file operations on file (upload, download, append)
— All users see same copy of file

Owner can revoke users
— When user revoked, they can no longer do any operations on file

. 7 SN
(\ ~ y L\
N N\ —~/ N
\ AL RN
\ < X
R I

”l\ M:P ’ %l.

N PN N

) N ~J
7 |
O

Q >

) /))01 ,/)

i
-

[/{f

&

4

7

What you WON'T implement

Make a user
. Networking (it's all local) client.create_user("usr", "pswd")

« Writing actual files to disk ”

 Crypto (we provide a library) 4 Log in

u = client.authenticate_user("usr",

11

= You can think of the actual implementation 4 e some data to upload

as a secure, in-memory key value store data_to_upload = b'testing data’
Note: All client state must be on the # Upload it
dataserver/keyserver u.upload_file("filel", data_to_be_upl

=~ # Download it again

downloaded_data = u.download_file("f1
assert downloaded_data == data_to_be_

Crypto primitives

The crypto library

The support code contains a cryptographic library, which provides the total set
of cryptographic primitives you can use

* No external crypto libraries
2 CO/VFJpg,«/T»ﬁL/f
~ IrEeniry

What you have

« Asymmetric crypto (Encryption, digital signatures) ~
* Symmetric crypto (Encryption, HMACs) -

» Hashing

» Key derivation functions

»» Secure randomness

Asymmetric Crypto

Encryption L Tf
* Gen() -> K_pub, K_priv C@Nﬂp ENTIP |
* Encrypt(k_pub, data)

I- Decrypt(k_priv, data)

Silelallale]

» Gen() -> K_pub, K_priv / NTED /L)T/

« Sign(k_priv, data)
o Verify(l(_pUb, data)

Msymmetric Crypto

Encryption

* Enc(k, m) :Z @A//:/pg/uf//lé/f 7/

 Dec(k, c)

Authentication with symmetric crypto &~ /Nfgé%/f/

* Message authentication codes: computed based on hash of message, can
verify if you have key

. HMACK, m)->t (MAE) ~— 7k OF)T LIKE A
. HMACEqual(t1, t2) => {0, 1 Kesep KASH funcrion)

Design: In general

* In general, use one key per purpose

— Think about how sharing keys between operations can affect security
— HashKDF is your friend

* A bit of software engineering can help you!
— Consider making some helper functions for common operations

* | will post some examples on serialization (look for them!)

Asymmetric vs. Symmetric crypto

ALy pp i auc 5}’ MMETR(C
~Cw prrmeisere g — O ey
— Stow = /ﬁéf VS, Asymiires
— LIHIT 60 S/ZE oF NEEUSES — AW EMESPT
— ANYope AV FrcryPT AVY 76 mECSAE
JUST By fmowwe (3,3

=2 G5 For (ARGE
=i YBE USEFAE Ot SIANE DATA .
=2 Yy el NAVE pamy

Key derivation

. PBKDFZ(passwo;’d, sélt, key_length) -> key_bytes L f)//‘ll‘tlf?ﬂlc

— Secure generation of a key based on a password /(t.
— Implemented as many iterations of a hash function (see passwords lecture)

£
& Slew
» HashKDF(key, purpose) -> another_key
ot v S ke (1, ‘o)
félflﬂNZ /7@
:? G USE TO Compure SAHE
KE) Frok pregeny SELod

/\ﬁjr/j‘ ,2
A) ra) \ y [/ /)
L 0G7 YD [0G/IV y
W
) =N L,
/ 7
-
' A i] A
p P - Abpocs] LIAENADE [fe
{ -/ N/ &
A
- \ el o aadl - y
— Y SONE MAE =y
IFL/Z/’J\QE (PoBLc

A

EMCRYFT ALL 21eel oo/ (b

N

L" 4+ A
. / /-
K rzZ_
J
y 41/'
v £,
" T WNAT) (¢
A
/ AL 70 CAAvE

(o L OB

HashKDF example

base_key = crypto.SecureRandom(16)
derived_key_1 = crypto.HashKDF(base_key, "encgyption")
derived_key_2 = crypto.HashKDF(base_key, "mac")

Derived keys are the same length as the input key:
assert(len(base_key) == len(derived_key_ 1))
lassert(len(base_key) == len(derived_key_2))

derived_key_3 = crypto.HashKDF(base_key, "encryption")

Using the same base key and purpose results in the same derived key:
assert(derived_key_1 == derived_key_3)

Authenticated encryption

Your goal for most things is confidentiality AND

integrity

Two operations: Can combine these operations

* Encrypt: Confidentiality * EncryptAndMAC(k, m) => ¢, mac

~Bp « DecryptAndVerify(k, c) => m (or error if c doesn’t
« MAC: Authentication m pass integrity check)

e How to do this is well-studied and has common
pitfalls

— Which do you do first? (Encrypt then MAC, MAC
then encrypt, Encrypt THEN MAC, ...)

— See cryptography lectures for more)

* You should use: Encrypt then MAC
=

)4

TAMAC = T

@)

J d D

I 7 ~

V“ ——

\r i

o IR | ,_W

) ANl LY

PN LY

= N X

A \§
Q_

NCRYF — TAN = MAC

Authenticated encryption

You should use: Encrypt then MAC

Proven to give us the security properties we
want, when different keys used for
encryption and hashing

Questions?

Setup and Stencil

Container setup & Environment

For this project, we'll use the "Development container" (same as project 1)
« Some slight updates—see setup guide for instructions

 Stencil uses a Python virtual environment
— See setup guide for instructions
— Like VSCode? You can use it with the container!

(Vroro-FILE)
CS1620/CS2660: Efficient updates

"Efficient" updates

* Broadly, When uploading a new file, bandwidth should scale based on

amount of data that was changed

* How you do this is up to you, here's one way...

Sovow” VPO () # a7
VDN 5 pig e) [ﬂ

LoAD (Fo LOATS
RE < UPLBAOIK THE / ("/ Doty
LONDLE FiLE

:7 TR ABouT Do FILL 1wro Blacks
DEAL of LACN Brock

Aow 70 FRINK. - ABOVT s domtgeesT
INES ILE [0 /0 SILTIPLE Plack (e
y " N
LAY Ntk pee (HAW TREE)
(1717 /7“ "
[INCT/IV)
I] /
| C .
vl / v
14 / , N\ / -»Z‘,/'Z‘ '/l/ r
JN(P G)] aS
7 Fin [
] [—
~— /
Prirqan — N T 13
[[as)))] Fi
{ 4 \ I 17 ’ : 2,
| ,Z, [Po j ’ D I vz J 7~

Fc¢

r more notes on this, see the “Cloud Security” notes, starting on page 27

(Was extra reading from lecture)

