
Dropbox Gearup

Goals

Idea: design an end-to-end encrypted file sharing service

Learn how to design a secure system using the cryptography and
security tools we've learned so far!
• Thinking about how to design a system securely
• Iterate on your design after receiving feedback
• Think about attacking your design based on a threat model

Goals

Goal: client for end-to-end encrypted file sharing service

What you have
• Crypto library
• Some insecure data storage
• Threat model (what kinds of attacks to defend against)

What you'll build
• Client API for storing data securely on insecure data storage

You get to figure out how to use the provided crypto
operations to accomplish this goal!

How you'll do this

• Now: Design document
– Think carefully about how you'll implement the requirements
– How you'll store data, how you'll use crypto to secure it
– ~4 pages + diagrams
– See handout for details
ÞMeet with TAs afterward for feedback

• Implementation (Due Monday, May 8)
– Submit your code + final design document

Remember: the big part is about your design!

How you'll do this

• Now: Design document
– Think carefully about how you'll implement the requirements
– How you'll store data, how you'll use crypto to secure it
– ~4 pages + diagrams
– See handout for details
ÞMeet with TAs afterward for feedback

• Implementation (Due Monday, May 8)
– Submit your code + final design document

418

What the client looks like
Make a user
client.create_user("usr", "pswd")

. . .

Log in
u = client.authenticate_user("usr", "pswd") # Returns a User object

Make some data to upload
data_to_upload = b'testing data'

Upload it
u.upload_file("file1", data_to_be_uploaded)

Download it again
downloaded_data = u.download_file("file1")
assert downloaded_data == data_to_be_uploaded

I
You

IMPLEMENT

TESE

The Client API: what you'll implement

Your implementation: some functions that implement the client

• User operations: create_user, authenticate_user

• File operations: upload_file, download_file, append_file

• Sharing operations: share_file, receive_file, revoke_file

Your goal: implement client while preserving confidentiality and integrity in an
insecure environment

So what's the environment?

The Wiki

The definitive source for everything all specifications is the wiki:
https://cs.brown.edu/courses/csci1660/dropbox-wiki/

Look here for:
• Descriptions of each API function and requirements
• Detailed description of threat model/environment
• Documentation for all support code

For implementation notes and container setup, see the setup guide:
https://hackmd.io/@cs1660/dropbox-setup-guide

l

https://cs.brown.edu/courses/csci1660/dropbox-wiki/
https://hackmd.io/@cs1660/dropbox-setup-guide

TESETUP INITIALVIEW ALLINSTATEONERGETREE
DATASERVER

TEEDATA
Goes

SMALL IMMUTABLEiDATASTORAGE INSECURE

ÉÉI
f

CANREADWRITE

System Overview

Dataserver (KS)
• Map<Key, Value>
• No limits on what you can store
• Attacker can view/modify/delete data

Your client

Attacker

Keyserver (KS)
• Map<Key, Value>
• Immutable (can't modify after writing)
• Per-user storage limit
=> More secure, but limited

Kerr P
Kpots B

Dataserver

• Map<Memloc, Data>
– Memloc: 16 bytes
– Data: bytes

• Operations: Set(), Get()

• Most data will be stored here
• Attacker has full access

– What could an attacker read? => Threat to confidentiality
– What happens if an attacker changes something? => Threat to Integrity

16BYTE VALVE COULDJUSTPASH A STRING 4
TRUNCATE

Keyserver

• Public, immutable key-value store
• Map<key_name, data>

– key_name: any string ("key-alice")
– Data: bytes

• Operations: Get(key), Set(key, value)

• Designed for storing public keys
• Immutable: upload once, can't modify again (but neither can attacker)
• Number of keys per user must be constant

=> Can't grow with number of files, operations, etc.

__

Threat model: What the attacker can do

• Read/write/modify anything on Dataserver
• Read on the Keyserver (but not modify)
• Can create users/use client API, just like any normal user
• Knows how your client works

– Can see your code
– Knows what format in which you'll store data

=> For full details, see the wiki ("Threat model" section)

DON'TRELYON OBSCURE FILENAMES ETC

API Overview

API: User functions

• create_user(user, pass) -> User
• authenticate_user(user, pass) -> User

Creates/Authenticates user in your system
• Generates or fetches any keys you'll need to implement other operations
• User object: you get to decide what goes in here
• All keys for encryption/integrity/etc will depend on this password (more on

this later)
– Don't worry about the user picking a bad password

API: File operations

• User.upload_file(filename, data)
• User.download_file(filename, data)
• User.append_file(filename, data)

• Upload/download a file securely
• Append to an existing file

– Performance requirement: data sent must scale only with data being appended
(ie, can't download and re-encrypt entire file)

• CS1620/CS2660 students: additional requirement on how files are stored
for performance (more on this later)

BASEDON USER'S STATE PER USERKEYS ETC
r

StringBetts

ADDITIONAL PERF REQUIREMENT ÉÉ

API: Sharing

• User.share_file(filename, user_to_add)
• User.receive_file(filename, file_owner)
• User.revoke_file(filename, user)

• Owner can share file with any number of users
• Users can do any file operations on file (upload, download, append)

– All users see same copy of file

• Owner can revoke users
– When user revoked, they can no longer do any operations on file

Revised from previous version of guide! Announcement soon!
=> CS1620/CS2660 students: can add to this if you want

Éyown
CAN SHAREREVOKE

A B DS
SHARE F 13013

o

ACCEPT INVITE

What you WON'T implement

• Networking (it's all local)
• Writing actual files to disk
• Crypto (we provide a library)

ÞYou can think of the actual implementation
as a secure, in-memory key value store

Note: All client state must be on the
dataserver/keyserver
=>

Make a user
client.create_user("usr", "pswd")

. . .

Log in
u = client.authenticate_user("usr", "pswd

Make some data to upload
data_to_upload = b'testing data'

Upload it
u.upload_file("file1", data_to_be_uploaded

Download it again
downloaded_data = u.download_file("file1")
assert downloaded_data == data_to_be_uploaded

n

Crypto primitives

The crypto library

The support code contains a cryptographic library, which provides the total set
of cryptographic primitives you can use
• No external crypto libraries

What you have
• Asymmetric crypto (Encryption, digital signatures)
• Symmetric crypto (Encryption, HMACs)
• Hashing
• Key derivation functions
• Secure randomness

A big part of your design is deciding how to use these!

CONFIDENTIALIT

I
INTEGRITY

i

i

Asymmetric Crypto

Encryption
• Gen() -> K_pub, K_priv
• Encrypt(k_pub, data)
• Decrypt(k_priv, data)

Signing
• Gen() -> K_pub, K_priv
• Sign(k_priv, data)
• Verify(k_pub, data)

I
CONFIDENTputt

INTEGRITY

Asymmetric Crypto

Encryption
• Enc(k, m)
• Dec(k, c)

Authentication with symmetric crypto
• Message authentication codes: computed based on hash of message, can

verify if you have key
• HMAC(k, m) -> t
• HMACEqual(t1, t2) => {0, 1}

A

CONFIDENTIALITY

INTEGRITY

MAC THINK OF IT LIKE A
KEYED HASH FUNCTION

Design: In general

• In general, use one key per purpose
– Think about how sharing keys between operations can affect security
– HashKDF is your friend

• A bit of software engineering can help you!
– Consider making some helper functions for common operations

• I will post some examples on serialization (look for them!)

Asymmetric vs. Symmetric crypto

ASYMMETRIC SYMMETRIC

ONE KEYCAN DISTRIBUTE KROB
FASTUS ASYMMETRI

f
Scow
LIMITONSIZEOFMESSAGES CANENCRYPT
ANYONECANENCRYPT ANY SIZEMESSAGE
JUST BY KNOWING EPUB
MAYBE USEFUL FOR SHARING

7 GOOD FOR LARGE
DATA
You WILL HAVEMany

Key derivation

• PBKDF2(password, salt, key_length) -> key_bytes
– Secure generation of a key based on a password
– Implemented as many iterations of a hash function (see passwords lecture)

• HashKDF(key, purpose) -> another_key
– Given one key, generate another deterministically
– Used to generate more keys!

I f 4 SYMMETRIC

KEY

Fo Ston

a HASHKDF Ki sign
session2 Kaew

CAN USETO COMPUTE SAME

KEY FROM DIFFERENT SESSIONS

Session 1 Session 2

LOGIT PASS LOGINAIIMS
Kio

µ egg egg
Kp Kp

FORKEY'Sesongis.no

QiKEyYY CAN'T ENCRYPT ALL FILES W SAME

Alice F F F
BoB S E out IF Alice

µ WANTSTO SHAREONLY
Fz with BOB

HashKDF example

p

I

Authenticated encryption

Your goal for most things is confidentiality AND
integrity
Two operations:
• Encrypt: Confidentiality => EncryptAndMAC(k,

m)
• MAC: Authentication => SignAndVerify(k, m)

• How to do this is well-studied and has common
pitfalls
– Which do you do first? (Encrypt then MAC, MAC

then encrypt, Encrypt THEN MAC, ...)
– See cryptography lectures for more)

• You should use: Encrypt then MAC

Can combine these operations

EncryptAndMAC(k, m) => c, mac
•
DecryptAndVerify(k, c) => m (or error if c doesn’t
•

 pass integrity check)

ENCRYPT THEN MAC

PLAINTEXT

ENTRAPKEN

1 matrix
b

CIPHERTEXT MAC

Authenticated encryption

• You should use: Encrypt then MAC
• Proven to give us the security properties we

want, when different keys used for
encryption and hashing

Questions?

Setup and Stencil

Container setup & Environment

For this project, we'll use the "Development container" (same as project 1)
• Some slight updates—see setup guide for instructions

• Stencil uses a Python virtual environment
– See setup guide for instructions
– Like VSCode? You can use it with the container!

CS1620/CS2660: Efficient updates

UPLOAD FILE

"Efficient" updates

• Broadly, When uploading a new file, bandwidth should scale based on
amount of data that was changed

• How you do this is up to you, here's one way...

UPLOAD FA DATA
SHOULDN'TREQUIRE UPLOAD FIFITA
RE UPLOADING THE
WHOLE FILE

THINK ABOUT DIVIDING FILE INTO BLOCKS
DEAL W EACH BLOCK

HOW TO THINK ABOUT INTEGRITY
WHEN FILE IS IN MULTIPLE BLOCKS

ONEWAY MERKLE TREE HASH TREE

HAD
T THHAH

1 4 th
FI tf Ia SHIBH

DATA BG BD BD DB

For more notes on this, see the “Cloud Security” notes, starting on page 27

(Was extra reading from lecture)

